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Non-Parametric Inference and Tracking for Poisson Processes

~~

Non-parametric statistics provides a framework which is rich with tools that allow to make inference on high-
or infinite-dimensional models under very weak assumptions on the underlying structure of the data. Poisson
processes have a long-standing history as some of the most widely used processes, not just in Statistics, but also
in fields such as communication, meteorology, seismology, hydrology, astronomy, biology, medicine, actuary sci-
ences and queueing. This thesis is divided into two parts: Inference and Tracking. Most of the results in the first
part apply specifically to Poisson processes. In the second part we work with more general models but some of

the results there can also be applied to these processes.

Poisson processes are often used for modeling periodic time-varying phenomena. We study a semi-parametric
estimator for the period of the cyclic intensity function of an inhomogeneous Poisson process. We make no para-
metric assumptions on the intensity function which is treated as an infinite dimensional nuisance parameter.
A new family of estimators is proposed for the period of the intensity function; we address identifiability and
consistency issues and present simulations which demonstrate good performance of the proposed estimation
procedure. We compare our method to competing methods on synthetic data and apply it to a real data set from

a call center.

The starting point for our next problem is also this call centre data. Having concluded that the data presents
daily periodicity, we model it as Poisson process and propose methods to estimate its daily intensity function.
More specifically, we use non-parametric Bayesian methods. We start by showing some estimates for the call
center data obtained via MCMC for free knot B-spline based priors to which we will return later. The theoretical
performance of these priors falls within the general approach that we apply for making Bayesian inference on
Poisson processes. Our results cover the case when the process is observed in full but also the case when only
a discretized version of it is observed which is quite important in applications. Under the assumption that the
intensity function is an a-smooth function, these results imply that our B-spline based adaptive (i.e. without
using knowledge of the smoothness «) prior delivers adaptive rates of contraction for estimating the parameter
of the Poisson process. We present further results about using general stochastic process priors, endowing the

scale of the intensity function with a prior and about priors on monotonous intensities.

Spline-based priors like the ones we have used for making inference on the call centre data are quite popular
in Bayesian non-parametric statistics. Practitioners commonly use these priors, mostly due to their flexibility and
to the ease with which one can design MCMC algorithms for them. The number and the location of the knots
as well as the respective B-spline coefficients are endowed with a prior. Although the practice of using random
knots is commonplace in applications, theoretical results on these priors were still missing in the literature. Under
some mild, sufficient conditions, rates are attained for these adaptive priors. In doing so, we propose a theoretical
framework that can be used to motivate certain design decisions when selecting priors that would otherwise be

made arbitrarily. We present some numerical results for synthetic non-parametric regression data to illustrate
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the advantages of working with random knots when estimating spatially inhomogeneous functions.

In the second part of this thesis we treat some tracking problems. Tracking refers to a framework where we se-
quentially collect data from a distribution indexed by a parameter that is slowly changing in time. This problem is
of fundamental interest in sequential analysis and has many applications in signal processing, speech recognition,
communication systems, neural physiology, ecology and econometrics. An important problem which we can fit
into this framework is that of quantile regression. Paralleling regression, where we are interested in estimating
the conditional mean of a response variable given some covariates, in quantile regression we want to estimate
a conditional quantile. This alternative take on the problem of regression results in more robust estimates and
if we estimate several quantiles simultaneously this gives us a quite complete description of the evolution of a
regression function in time. Our results apply to a more general setting than quantile regression since we allow
for conditional dependences between consecutive observations which is quite natural in the context of sequential
sampling; also, we allow the level of the quantile being tracked to change in time. The algorithm we propose is
recursive and can therefore be implemented in a straightforward and efficient way and we derive non-asymptotic,

uniform bounds on its approximation error.

Finally, we consider also the problem of tracking a drifting multivariate parameter in a more general context: a
time series is observed, each observation depending on a parameter which we allow to vary slowly. This constitutes
a growing statistical model whose time-varying parameter we would like to track. Instead of assuming that we
know the model completely, we only presume to have access to a so-called gain function that depends on the
previous estimate and on a new observation. This gain function can be used, together with a step sequence, to
update an arbitrary approximation of the drifting parameter. Applying this procedure sequentially results in a
tracking algorithm. We derive a non-asymptotical, uniform error bound on the error of the tracking sequence
and specify what this bound becomes for different assumptions on the variability of the drifting parameter. What
constitutes a proper gain function depends on the parameter (or functional of the parameter) of interest and on the
dependence of the model on the drifting parameter. We outline how gain functions can be constructed for general
models and how they can eventually be modified to verify our assumptions. The problem of tracking drifting
parameters in a d-dimensional autoregressive model is treated in detail, along with some simpler examples to

illustrate the method. Some numerical results are also presented.
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Introduction

T HIS CHAPTER contains some introductory material for the remaining content of this thesis. We present a
broad overview of some important concepts in Statistics providing details only when the material is relevant for
what follows in the subsequent chapters. There will be some focus on basic elements of Mathematical Statistics with
an emphasis on non-parametric estimation. M-estimation, stochastic approximation, non-parametric Bayesian
statistics and adaptation will be treated in more detail, since they constitute the main content of the subsequent
material. We also summarize the scope of the remaining chapters, including the models they apply to, the methods

used, the results obtained and the applications of these results.



2 CHAPTER 1. INTRODUCTION

1.1 NON-PARAMETRIC STATISTICS AND INFERENCE

Statistics is a very diverse field which encompasses the study of quite a number of problems connected with ex-
tracting information from data. More specifically, we might want to summarize data, design experiments, model
or infer upon certain phenomena, pick among competing alternatives, assess the uncertainty of a certain approx-
imation, keep track of a varying quantity, forecast the evolution of a given phenomenon, etc. In mathematical
statistics these tasks are performed on solid theoretical ground by using tools from different fields of Mathemat-
ics; primarily Probability Theory, but also Algebra, Analysis, Approximation Theory, Ergodic Theory, Functional
Analysis, Information Theory, Measure Theory, Numerical Analysis and Stochastic Process Theory.

The central object of interest in Mathematical Statistics is the model and its relation with observed data. Models
are collections of probability distributions which represent the different possible ways in which data may have
been produced. These, in turn, are not observable, but data are, and carry information about their distribution
and therefore about the model. Data can thus be used to perform what is arguably the most fundamental task in
Statistics: inference; to learn from data. Inference is used to answer the following question: Given a model P and
data produced by a fixed distribution from this model, say P;, what can be said about P, based on the observed
data? In this thesis we will be mostly concerned with inference. We will be working with certain fixed models, or
sometimes with families of models, and we will use different techniques to approximate or estimate Py, based on
observed data, in a number of different settings.

Although in this thesis we will be mostly concerned with deriving theoretical results, we will, at some points,
use the methods we develop on actual data. When working with real data — meaning data produced by some
physical phenomenon — one might wonder how well a model could ever represent the mechanism producing
such data. After all, no data, simulated or otherwise, is, to the best of anyone’s knowledge, actually being produced
by a probability measure. The data should instead be thought of as being produced by some unknown mechanism;
the model should only be expected to act as a proxy for this mechanism and capture the main (probabilistic)
features of the mechanism. The true distribution Py can be thought of as the best approximation in model P
for this mechanism. To perform inference, we assume that the data were indeed generated according to some
unknown “true” distribution Py € P and then determine which element in P best plays this role. This justifies, to
some extent, our use of large, infinite-dimensional models, to do what is known as non-parametric statistics. In

the next section we start by formalizing the concept of size of a model.

1.2 MODELS AND PARAMETRIZATION

It should be intuitively clear that the choice of the model P is very important when making inference. If we work
with a large model, containing many possible distributions, then we will have more flexibility when constructing
estimators and will arguably be able to find a better approximation for the underlying mechanism generating the
data. To make the concept of size of a model more precise, it is customary to parametrize the model. We then see
the model P as the collection

P = {P@ : 0 e ®},

where we say that 0 is the parameter of the model; it lives in the parameter set ® and indexes the distributions Py
in the model P. A parametrization is simply a labelling of the distributions in the model and so it is not unique.

We will, however, always make sure that parametrizations are such that if Py = Py then 6 = 0’ (i.e. the map
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0 — Py is a bijection) in which case we say that the parameter 0 is identifiable. It means that we can identify a
distribution from the parameter that indexes it, making the terms distribution and parameter interchangeable, as
well as the terms model and parameter set. The parameter set @ will itself usually be a metric space (©, d) and
the parametrization will be made in such a way that models whose parameters are close (according to the metric
d) will be close themselves; cf. (1.22) for an example of a metric on P.

If the parameter set ® is such that, without loss of generality, ® c R4 for some d € N, then we call P a
parametric model. If ® c F where F is an infinite-dimensional space (of, say, functions or sequences), then
we call P a non-parametric model. In the mixed case, where ® c RYx F,wecalPa semi-parametric model;
sometimes we will also refer to a semi-parametric models as having a parametric part and a non-parametric part
(here a subset of R? and a subset of F respectively).

Typically we will be interested in estimating ¢(6y), some functional of the unknown parameter 6. This
functional can be the parameter 0 itself, although one might also be interested in means, variances, modes or
quantiles of Py, . In non-parametric models, if 0 is a curve, we might also be interested in estimating a point of
maximum or a derivative of 6, or 0 at a point. In the semi-parametric models, we will often only be interested
in the parametric part of the model, in which case the non-parametric part will be referred to as a nuisance
parameter.

We work with all three types of models in this thesis but we focus mostly on non-parametric models and
methods. Roughly speaking, working in a non-parametric setting corresponds to making less assumptions about
the underlying mechanism which generates the data. This results in a larger set of distributions being considered.
Working with non-parametric models sometimes translates into methods that are, in a sense, simpler and more
universal in their applicability, requiring less input from the user and being less dependent on the specific nature
of the data. The difficulty in the use of non-parametric models is in establishing theoretical properties for the
estimates; this follows from the fact that less assumptions are made about the data and that the models are allowed
to be more versatile, and therefore more complex. Computational and numerical issues may also arise on occasion
due to the use of high-dimensional objects. We walk then the line between making as few assumptions as possible
- and in doing so increasing the applicability and flexibility of the method - and making enough assumptions -
so that we still have tractable models and also enough structure to be able to establish theoretical properties and
assure some level of precision.

We will defer our presentation of examples of estimation methods to Sections 1.8, 1.10 and 1.11 since these are
already quite connected with the content of the remaining chapters. Before this, we focus on sampling, different

types of data and some of the models we will be treating in later chapters.

1.3 SAMPLING

Consider a generic, parametrized model P = {Py : 6 € ©}. Each distribution Py is formally a probability
measure on a common measurable space (Q,§), where Q is the sample space and §F a o-algebra of events on
Q. It is common to assume that the measure Py admits a density pg with respect to some common dominating
measure, typically the Lebesgue measure y, i.e., pg is the Radon-Nikodym derivative dPg/dy. An observation
is the outcome of a random variable X on a measurable space (X, X), which maps Q to X and which is §-
measurable.

We mention first the framework of independent sampling. This is, by far, the most common sampling scheme
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in Statistics, primarily due to the fact that the independence assumption considerably simplifies the theoretical
treatment. In this setting, it is assumed that an observation X is distributed according to Py = Py, € P. An inde-
pendent and identically distributed (i.i.d.) sample is a stochastic vector of observations X(") = {X}, X;,..., X,,}
which is distributed according to P(Sn), the n-fold product of the measure Py with itself, meaning the components
X; are mutually independent and distributed according to Py. It is also possible that the sample is independent
but not identically distributed (i.n.i.d.) in that each element X; of the sample is distributed according to a (pos-
sibly different law) Py; € P. An example of this setup is that of regression with, say, fixed design, where we
make observations of a function corrupted with noise at pre-specified points t") = (#,...,t,) and then attempt
to recuperate the underlying regression function based on these observations. We would then have that for a

fixed (noiseless) regression function fy, each observation X; is distributed like Py, with 6o; = ¢:(fo) where
¢i(fo) = fo(t:), a functional of fp.

There are also certain dependence assumptions one can make on the observations such that it is still fairly
straightforward to make inference. For these, the data is typically assumed to be a time series, meaning that the
observations Xj, X5, ... are seen as a sequence of random variables or vectors. The dependence structure is then
expressed in terms of how the law of a certain observation depends on the observations that came before it. We

speak then of the memory of the Stochastic process.

A Markov chain of order 1 (or with memory 1) is a discrete-time Stochastic process X, such that X,,,;|X,, has
the same (conditional) distribution as X,+1|X,, where X, = (X, ..., X,,). Informally, given the present, the future
of the chain and the past of the chain are independent. Further, if the distribution of X,,41|X,, does not depend
on n, the chain is said to be time-homogeneous. If all the elements of the chain take values in the same space
X (here called the state-space) then this means that our model is now parametrized by a parameter set ® x X
which corresponds to each observation X,|(X,-1 = x) being distributed according to a conditional probability
measure Py(+|x). The measure Py(:|x) is also-called the Markov kernel of the chain and it is always required for
the mapping x — Py(+|x) to be F-measurable. These definitions can be generalized in the obvious fashion to

Markov chains of order m.

An important quantity studied in the context of Markov chains is the stationary distribution of the chain. This
is an invariant distribution for the chain in the sense that if an element of the chain is ever distributed according
to this measure, then all subsequent states will have the same distribution. Given a Markov chain, one often wants
to know if such a distribution exists and to determine it, or be interested in how long a chain which is started from
an arbitrary state, takes to mix (read: to be distributed according to the stationary distribution). The stationary
distribution of the chain is often studied using probabilistic methods but one can see it as the long-term behavior
of a dynamical system where the initial measure for the chain evolves under the action of the transition kernel in

the context of Ergodic Theory (cf. Sectionl.9).

A different type of memory structure which observations may have the Martingale property. A filtration of
a measurable space (Q,§) is a growing sequence of g-algebras §o € § € F2 S --- € §. A Stochastic process
X, is said to be adapted to a certain filtration (Fx : k € Np) if each X, is §,-measurable, n € N. One often
considers the natural filtration, where for n € N, §, = 0(X,,) is the o-algebra generated by X,, (with §y the trivial
o-algebra). The discrete-time process X, is called a Martingale with respect to the filtration (Fy : k € Np) if
the process X, is (& : k € Np)-adapted, E| X, |; < oo, and verifies the Martingale property: E[ X,,.11|§,] = X,

Informally, a filtration corresponds to the growing knowledge about a certain aspect of the process as time
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progresses; the Martingale property states that knowledge of the past does not help to predict the future. In the
same way, one speaks of a sub- or super-martingale if the martingale property is replaced with E[ X,,+1|§x] = X,
and E[ X,,41|Fn] < X, respectively. A useful fact about Martingales which we will need in Chapters 5 and 6 is that
Martingale increments (sometimes called Martingale difference sequence) M,, = X,, — X,,_; (with M; = X)) are
uncorrelated.

We can also consider less structured, growing statistical models where each observation X,,, given X,,_;, is
distributed according to some conditional distribution depending on X,,_; and some vector of parameters 8, € ®".
We will be referring to these as simply time series and both Markov chains and discrete-time Martingales will be
particular types of time series.

In Chapters 5 and 6 we will be working directly with Markov chains and time series but we will not be
concerned with stationary distributions, since they will in principle not exist in the setup we will be considering
there. In Chapters 4 and 3 these processes will also make an appearance in the form of a Markov Chain Monte
Carlo sampling algorithm (we will briefly summarise these sampling methods in Section 1.12). In these algorithms,
the usual relation of the Markov chain with its stationary distribution is, in a sense, reversed. Given a measure
from which we cannot sample directly, our aim is to construct a Markov chain which has this measure as stationary
distribution. This will be used to indirectly obtain a sample distributed according to this measure: trajectories
from such a chain can be used as approximate samples from its stationary measure, which is particularly useful
in Bayesian non-parametric Statistics (cf. Section 1.11).

In the next section we provide some basic facts about Poisson processes which are a particular example of a
continuous-time Markov processes and of a continuous-time sub-martingale. A description of continuous-time

counterparts of Markov processes and Martingales can be found in [52], for example.

1.4 PoissoN POINT PROCESSES

Poisson point processes are widely used statistical models in fields such as communication, meteorology, seismol-
ogy, hydrology, astronomy, biology, medicine, actuary sciences, econometrics and queueing, to name but a few.
They are point processes that can be used to model counts of random event. Their wide use can be attributed to
several factors [89]. It seems to be a fairly accurate model in many applications which might be explained by the
relatively mild qualitative conditions under which a point process is a Poisson process. These processes also have
a simple structure and are commonly used both as a preliminary tool of study - eventually paving the way to the
use of more sophisticated point processes — or as a basic component for constructing other stochastic processes
whose sample paths are quite different from those of a Poisson process. Regardless, they are used extensively and
have many interesting properties.

The literature on Poisson processes is vast so we collect here just a few fundamental results and definitions
which are used in the remaining chapters. Poisson point processes are essentially random collections of points,
with certain properties, usually on a d-dimensional Euclidian space, although they can be defined in more abstract
spaces. The variable which indexes the process is usually referred to as time and/or space. The process N, represents
the number of times that a certain event has occurred by time ¢#; say arrivals of calls at a call centre (see Chapters 2
and 3). One can also consider a time and a space variable and express the location of imperfections on a long
strand of material under stress in time. With two space dimensions and one time dimension one can for example

model rain droplets falling on a plot of land over a certain period of time (see the numerical example in Chapter 6).
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A one-dimensional Poisson point process (cf. [54]) is usually simply referred to as a Poisson process. It is a
continuous-time stochastic process Ny, indexed by time ¢ > 0, non-decreasing, cadlag and taking values in Ny
such that Ny = 0 (i.e. a continuous-time counting process). It has independent increments, and is parametrized
by a non-negative function A(¢), t > 0, called the intensity function of the process. When this function is constant,
the process has stationary increments and is called homogeneous, otherwise it is called inhomogeneous (or non-

homogeneous). Any increment of the process N is Poisson distributed, such that for 0 < a < b, we have

5 }’ZENQ.

b ([ab)t(t)dt)n

P(Nb -N, = n) = exp ( - L At) dt)T

Poisson point processes in R? can be defined in a similar fashion and have analogous properties. We present

here a simulation-based characterization that can be found in [91]. This characterization is adequate here since it

defines Poisson processes in R? in a way which is quite close to the procedure which is used to simulate them;
we use simulated Poisson data for the numerical results in Chapters 2 and 6.

For S ¢ R, a realization from a Poisson point process on S, & = {E(S) : S € S} is a random collection of

points & = (n, {x1,...,x,}); if n = 0 we have (0, @). The event space of this process is then
E(S) = {(0,@)} U {(n,{xl,...,xn}) ix;€8,i= 1,...,n}.
n=0

The process is characterized by a non-negative intensity function A : S + R? for which it is assumed that

Osfs)t(s)ds<oo,

for all bounded subsets S ¢ S. Note that we may have [ A(s) ds = co.
Obtaining a realization & from Z(S) on subsets S ¢ S, with intensity A,a function on S € S, can be represented
as a two-step procedure. If [¢ A(s) ds = 0 then & = (0,2). If [¢ A(s) ds > 0 then E is obtained by first sampling a

discrete random variable N with mass function

A(s) ds ’
pn(n)=P(N=n)= exp(— ﬁ)&(s) ds)(fsnl), n € Np.

If n = 0 then & = (0, @) and the realization has been obtained. Otherwise, given N = n > 0, we sample n points

according to i.i.d. continuous random variables X; in S, with probability density function

M)
px(x) = JsA(s)ds’

x€S.

Thus, if the intensity A is constant on S, then the density of the resulting homogeneous point process, given N is
simply uniform on S. In the inhomogeneous case, given N, the density is proportional to the intensity A.
This construction makes it clear how to draw a realization from Z(S), call it £ = (n, {x1,...,x,}), n € Ny,

x; € Sfori=1,...,n, via an acceptance-rejection algorithm [51]. We start by selecting an importance function'

"The function g must be positive and bounded on S and we must know a procedure to sample from g.
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g and defining

M = supm.
xeS g(x)

If S is a bounded set, then it is always possible to take g as the density of a uniform measure on S. To sample

from E(S), we then perform the following procedure:

1. Takex = &.

N

Sample n according to px.

Nad

If n = 0 then jump to step 7.

b

Generate a point x according to g and, independently, u according to a uniform measure on [0,1).

w

. fuMg(x) < px(x) then replace x with {x, x}.

o

If x has less than n elements then return to step 4, otherwise continue to step 7.

~N

Take & = (n,x) as a realization of E(S).

Based on the representation given above, it is simple to see that the likelihood (with respect so an appropriate

dominating product measure) at A, given a realization & of E, can be written as

pe(&) = pn(n)pan(x1, ..., Xn [ N = 1)

fsA)ds) a
:exp(—fs)t(s)ds)( s . ) nlnfsl((s))ds

i=1

(The multiplicative factor n! comes from the possible reorderings of the elements in {x, ..., x,}.)
The particular case of the one-dimensional Poisson point process with intensity A on [0, ] occurs when we
take S = R¥, S = §; = [0, t]. If we denote N = N; = E([0, ]), then the likelihood at A becomes

PE(N):exp(—[otl(s)dhtfotlog(/\(s))st).

If we refer to a Poisson process with constant intensity A(s) = 1, s € [0, ], as a standard Poisson process, then as
the expression above suggests, we can write, for each t > 0, the density of N; with respect to a standard Poisson

process as
pA(N):eXp(—fo ()L(s)—l)ds+f0 log()t(s))st).

(see for example [50].)

Another important feature of Poisson processes which can also be seen from an algorithmic perspective
is thinning [91]. This procedure is used to reduce the number of events in a Poisson point process. Consider a
Poisson point process 2 on S with intensity A and pick a function « such that forall x € S, 0 < a(x) < 1. The

function 1 — a(x), x € S represents the probability of removing from E a point located at x. Given a realization
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E=(n,{x1,...,x,}) of B(S), S € S, the process of independent Bernoulli thinning corresponds to removing
from & each x; with probability 1 — a(x;), i = 1,..., n, independently of one another; the realization from the
thinned point process is denoted &, = (m, {5, ..., %, }) and contains the points that were not removed. The
index m corresponds to the number of points {x;,...,%,} € {x1,...,x,}. The realization &_, contains the
removed points. Making use of the representation of Poisson point processes based on the acceptance-rejection
method, one can see that &, is actually a Poisson point process with intensity A, (x) = a(x)A(x). This also means
that an inhomogeneous Poisson point process on S with intensity A can simply be seen as a homogeneous Poisson
point process on S thinned according to a(x) = A(x)/ [ A(s) ds. All of this can be extended straightforwardly

to allow thinning into more than two processes; in this case the procedure is usually called coloring [54].

Poisson point processes have another important property called independent scattering. The term independent
scattering has been introduced into the literature quite recently in [69] but it conveys very well how the points
in a realization of a Poisson point process arrange themselves independently of one another. The property can
be described as follows. Consider a Poisson point process £ on S € R with intensity A and two disjoint subsets
A,B c S. Let E4 and Ep be obtained by restricting E to A and B, respectively, in the sense that for any S ¢ S,
given a realization & from E(S), {4 and &g contain the points from & which are in An S and Bn S, respectively.
As the notation suggests, E4 = {E(S) : S < A} and Ep = {E(S) : S ¢ B} are Poisson point processes on A and
B since they are simply obtained from E via thinning using a(x) = T4(x) and f(x) = 1z(x), respectively. With
this in mind, it is straightforward to check that

pEAuB(E) = pEA(fA)pEB(EB)’

so that the two Poisson point processes are even independent. In passing we also see that by taking B = A%, a

thinned Poisson point process and the Poisson point process containing the remaining points are independent.

1.5 CONSISTENCY, ASYMPTOTICS AND NON-ASYMPTOTICS

Let us return now to general, parametrized models. Once a model has been fixed and data collected, the goal of the
inference procedure is to devise an estimate, i.e., a measurable function of the data, én = S(X(”) ); this estimate is
meant to be an approximation for the unknown parameter 6, and therefore for the unknown distribution of the
data, Py. Assume that the parameter space ® is endowed with a metric d. Being a function of the data, estimates
are random and so any criterion to assess the proximity of an estimator and an estimate must be a probabilistic

one. A basic requirement is that of asymptotic consistency. An estimator is consistent for 0 if,

Pgo(d(én, 0o) > e) — 0, for every ¢ > 0, or, 11)
Pg, (limyoo d(B5,00) = 0) =1 (12)

AP A as. . .
as n converges to infinity. We will sometimes write this as 8, — 6y and 6, &5 0 and call it weak consistency

and strong consistency, respectively. Alternatively, one may also have consistency in expectation when it holds that

Eg,d(0,,600) = 0, (1.3)
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as n converges to infinity. The expectation in the previous display is also known as a risk function of the estimator
é,,. (We will return to the risk of an estimator in the next section.)

Consistency as presented in (1.1) through (1.3) only provides us with a qualitative measure of the preciseness
of an estimator; it states that the estimator is, with high probability, close to the unknown parameter as n grows.
We are mostly interested, however, in how close the estimator is to the unknown parameter, typically as a function
of the sample size n; we would like to quantify the estimation error. We speak then of an (asymptotic) rate of

convergence r,, of an estimator 8,, with respect to the metric d, if the rescaled sequence
-1 A
r, d(04,00) (14)

is bounded, as n goes to infinity, either in probability, almost surely or in expectation; we will also say that 0, is
rn-consistent for 6.

The asymptotics of an estimator corresponds to its large sample behavior. This type of analysis is made mostly
out of convenience since one can make use of several limiting results such as strong laws and central limit
theorems in their analysis, as well as disregard certain approximation errors which vanish in the limit. It is then
often possible to characterize quite precisely the asymptotic (limiting) probabilistic behavior of the estimator
under study. Of particular interest is determining the optimal (read: smallest) sequence r, such that (1.4) has a
nontrivial (tight) distributional limit. The downside of asymptotics is that it is usually not known how large a
sample should be, such that this limiting behavior comes into effect and such that it is in fact a good representative
for the outcomes of the estimator. Nonetheless, determining the asymptotic behavior of an estimator constitutes
a standard theoretical tool in Mathematical Statistics.

The alternative — or perhaps complementary — approach, is to establish non-asymptotic (meaning finite sample)
results by either deriving the exact distribution of the estimator or attempting to compute exactly, or bound,
quantities such as risk in (1.3), for each value of n. This is often a difficult task. Deriving the exact distribution of
an estimator, in particular, can often only be done under very strict assumptions and computing risks such as the
one in (1.3) is sometimes not informative since the quantity often depends on the unknown parameter 6, or may
not vary monotonously. Nonetheless, making use of the structure of specific estimators (such as the recursive
estimators we will present in Chapters 5 and 6), it is sometimes possible to derive non-asymptotic results. It will
also be clear that in certain situation it will be possible to derive asymptotical results from these (stronger) finite
sample results.

It is also of interest to know, for a given model, how properties such as consistency and rates of convergence,
depend on the value of the parameter being estimated. Specifically, we would like to know how well a parameter
can be estimated, uniformly over the model. This leads to the notion of optimality with respect to a certain

criterion. We describe this in a bit more detail in the next section.

1.6 MINIMAX RISK AND MINIMAX RATES

Risk functions play a very important role in Mathematical Statistics. They are used to define minimax risks,
which are the most commonly used criteria for assessing the optimality of an estimator over a certain model. The
inference procedure then boils down to the following: we pick a risk function and in doing so we implicitly define

a minimax risk — the smallest risk that an estimator can achieve, uniformly over the model; we then design an
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estimator which attains this minimax risk which we call an optimal estimator (with respect to that risk).

Risk function can be defined in a general context (cf. [49]) but we mention here just L,-risk functions. These

are perhaps the most commonly used risk functions when the parameter set ® is a normed space, and are given

by
RE(9,0) = Eg|9(X™) - 0|2, (15)

where 1< p < oco. The L,-risk, in particular, plays a classical role in estimation theory. The so-called bias-variance

decomposition, where the L,-risk is written as the sum of a (squared) bias term and a variance term, respectively:
R (9,0) = [Eg9(X™) - 05 + Eg 9(X™) - Eg9(X™)3. (1.6)

If the bias term is zero, or equivalently, if Eg9(X(™) = 6, then the estimator is said to be unbiased if this holds
only in the limit, then the estimator is said to be asymptotically unbiased. Based on (1.6) one then sees that an
estimator with small L,-risk is concentrated around the “true” underlying parameter (small bias) and has low
spread about its mean value (small variance) both of which are desirable properties. We would like to design
estimators that have both low bias and low variance and consequently low risk. These are, however, to some extent,
opposing tasks; reduction of the bias is usually achieved at the expense of increasing the complexity or variability
of the estimator so that it may best fits the data, but this will often lead to an increase in the variance of said

estimator in what is known as the bias-variance trade-off . For the rest of this section we will stick to the L-risk.

Returning to the general framework of estimation risk, it is instructive to look at the following quantity

rh = rP(©) = inf sup RE(9, ), (1.7)
9 9e®

which is called the minimax risk over ® [49]; the infimum is taken over all measurable functions of the data X(").

An estimator 9y is then called a minimax optimal estimator over 0, if asymptotically this function attains the

minimax risk

sup R} (99, 0) = rh(®) (1+ o(l)), asn — oo, (1.8)
0c®

although we will typically also be satisfied with near-optimal estimators 9; which satisfy

sup RE(9),0) < C, rh(®) (1+0(1)), asn — oo, (1.9)
0c®
for some bounded sequence C,. We will also typically be satisfied if C, = Clog®(n) for some constants C > 1 and
¢ > 0. A minimax estimator matches then the risk of the “best” estimator at estimating the “worst” value for the
unknown parameter.

For parametric models the minimax risk is typically, under some regularity conditions, of order nY 2. it is

commonplace to refer to this rate as the parametric rate since it is the standard rate obtained for parametric
models. Minimax risks over non-parametric models have been studied for many models since the first results in

this context were derived in [90] for non-parametric regression with random design and density estimation. If



1.7 ADAPTATION 11

Fa = C*(R?) denotes the space of all a-times continuously differentiable functions on R?, then the minimax
risk of estimation of the m-th derivative (m € Ny) of a regression function or density, based on independent a
sample of size n, is of the order n~(*~")/(e+d) ‘This particular rate is often referred to as the non-parametric
rate since it is of a larger order when compared to the parametric rate. In a sense this is the “price” to pay for
considering larger models. Another family of models over which there is a typical value for the risk are models
indexed by spaces of monotonous functions, where the risk is typically of order n13 (cf. [19, 102]).

The relation between the size of a model and the ease with which a parameter can be estimated should now
be clearer, at least for the particular case where the parameter set F, is C*(R): since the spaces F, are nested,
meaning that 7, € Fg whenever a > f3, the non-parametric rate (read: estimation error) drops, as the smoothness
or regularity o of the model increases because the parameter space becomes smaller.

The choice to nest the parameter sets according to differentiability is a particular choice. There are other ways
of “peeling” subsets of C°(I), the space of continuous functions on I € R, which may be more convenient when
working with specific types of non-parametric estimators. We can also simply consider the space of Lipschitz
functions Lo = Lo(L,I), L > 0and a € (0,1], the space of all continuous functions f such that

[f () = FOI < Lix =%, (110)

for all x, y € I. One might also consider the Holder class of functions H, = Hq (L, I), L > 0, which is the space of

all &y = | ] times differentiable function such that their ay-th derivative satisfies the Holder condition

£ () = ()] < Ll =y, (1

for all x, y € I. The Sobolev class of functions W, (L, I), « € N, L > 0, is the space of all functions f : I — R such

that £(* is absolutely continuous and
f(f("‘)(t))2 dt < L*. (112)
I

1.7 ADAPTATION

The typical situation for non-parametric models is that the minimax rate of estimation over a certain class @ will
depend, in terms of order, on some characteristic of the elements of ®. To make this precise, we say that there
exists some, smoothness index a € A and an order relation <, such that for «, € A, o < f implies Op C Oy We
then consider the problem of estimation over a family of models ® = ©® 4 = Uyc 4 ©4. Clearly, from the definition
of minimax risk, if A € B then r5(© 4) < r2(©3), i.e., smoother models can, in a minimax sense, be estimated
more accurately. In principle, we would then like to choose the smallest parameter set ® which contains the true
parameter of the data, and then we would like to consider an estimation problem over ® only. This means that
we would like to pick ® = @, such that for all 8 such that 8 < &, Py € ®g and for all 8 such that § > a, Py ¢ ©p.
This choice, however, is not feasible, in the sense that it relies on a-priori knowledge of a characteristic of the
unknown 6. This is, in a sense, the cost for considering estimation problems over non-parametric families of
models: the parameter set indexing the model becomes so large that the behavior of the estimation procedure
quantitatively depends on the unknown parameter - a fixed estimator, tailored specifically to perform well for a

fixed model, will no longer be able to effectively estimate an arbitrary model of the family.
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The problem of adaptation [32, 75] then corresponds to designing estimators which do not rely on knowledge
of the smoothness of the model but which nonetheless attain the rate 75 (©,), eventually up to a logarithmic
factor. Such estimators are said to be rate adaptive. We will explain how adaptation can be performed in a Bayesian

context in Section L.11. In the next sections we will start outlining some techniques for constructing estimators.

1.8 M-ESTIMATION & SEMI-PARAMETRIC ESTIMATION

We turn our attention now to the construction of estimators, namely of M-estimators for parametric models and
semi-parametric models (where the non-parametric part is treated as a nuisance parameter). In Chapter 2 we will
use these results to produce an M-estimator for the period of an inhomogeneous Poisson process with a cyclical
intensity function.

M-estimators represent a general class of statistics that are obtained as maximizers of a certain function of
the data, called a criterion function. These estimators where first proposed in this form by Peter Huber in 1964
in the context of robust estimation and actually generalize many classical estimators. Robust estimation refers to
the design of estimators which show “insensitivity to small deviations from the assumptions” [48].

In a classical M-estimation setup we are given a sample x(m = {X1,X3,...,X,} from the distribution
Py, € P = {Pg: 8 € ® c R}, a parametric model taking values in X c R™. We select a parametrized function of

the sample p : X x ® — R, giving rise to a criterion function which is defined as
1 n
M,(0) = ZZp(Xi,e). (L13)
i=1

The M-estimator associated with this criterion function is the maximizer
0, = argmax M, (6). (1.14)
0O
Under some mild conditions, by the strong law of large numbers, for each 0 € ©,

M,(0) =5 M(0) = Ep(X, 6),

as n tends to infinity. This particular form of the limiting criterion function motivates choosing the function p
such that M(6) has a maximum at the point 8 = y; if the criterion function is close to M (6) and is maximal at
0= én, then é,, should be close to 0.

Alternatively, for a vector valued function y(x, 8) : X x ® ~ R¥, one might also consider the criterion
1 n
¥ (0) = — > y(X:.0), (115)
i=1

and define an M-estimator (in this case sometimes called a Z-estimator) as the solution én € O to the system of

equations
¥, (0) = 0. (116)

The vector valued function y(x, 8) can be taken, for example, as the gradient, the vector of partial derivatives of
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a function p(x, @) with respect to each component of 8 = (0;, ..., 0,), if these exist.

The generality of this method can be seen by noting that several classical types of estimators can be ob-
tained for specific choices of p(x, 0): if the data admits a density f(x,0) and p(x,0) = log f(x, 0), the re-
sulting M-estimator will be the maximum likelihood estimator; the M-estimator associated with the function
p(x,0) = | x—g(0)]5 where g : ® = R™ is aleast squares estimator; if m = 1and the first d moments of the data
exist and can be expressed as g1(0), ..., g4(0) then the M-estimator corresponding to taking each component
of yasy;(x,0) =x'—gi(0),i=1,...,d,isa moment estimator; if for a € (0,1) we pick py(x,0) = —(a - 1{x <
0})(x — 0) then the resulting M-estimator will be the a-th quantile of the data. (We will return to the problem of
estimating quantiles in Chapter 5.) Besides generalizing these different estimators, we have in general some added
flexibility in that we are allowed to choose the function p. A criterion function can then be picked specifically for
each model or parameter of interest, but also, working with functions p which are truncated in some way may

lead to the resulting M-estimators that have good robustness properties [48].

The following theorems make a statement about the asymptotical consistency of M-estimators and Z-estimators.

Theorem 1.1 (M-estimator consistency [96])
Let M,, be a sequence of random functions and let M be a fixed function of 0 such that for every € > 0,

sup|M, (6) - M(6)| — 0
6cO

sup M(0) < M(6).
0:0-0|>e

Then any sequence of estimators 0,, such that M,,(0,,) > M, (8,) — 0p(1) converges in probability to 6.

Theorem 1.2 (Z-estimator consistency [96])
Let ¥, be a sequence of random vector-valued functions and let ¥ be a fixed vector-valued function of 6 such that

for every € > 0,
P
sup [V, (0) - ¥(6)] — 0
0cO

anE ¥(O)]>0= ¥ (680).

Then any sequence of estimators 0,, such that ¥,,(0,,) = 0, (1) converges in probability to 6.

The requirement for the convergence of the criterion function to take place uniformly over the parameter set
O is typically a stronger requirement than what is needed for the resulting M- or Z-estimator to be consistent but

it leads to a straightforward proof of the results.
A couple of notes about the generality of Theorems 1.1 and 1.2. First note that these theorem do not necessarily
require criterion functions to be of the form (1.13) or (1.15), respectively, and can be applied to any (measurable)

sequence of functions. Note also that the conclusions of the theorems hold under the assumption that the M-
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estimator (resp. Z-estimator) approximately maximises (resp. is a zero of) the criterion function; this typically

gives some extra flexibility when designing computational implementations of these procedures.

In Chapter 2 we will use M-estimation theory to produce an estimator for the parametric part of a semi-
parametric model. The criterion function we use cannot be written point-wisely as a mean of an i.i.d. sequence
of random variables. The functions of 0 that we are averaging to produce our criterion function will then not
have the same mean. Instead, the mean of these functions will be a certain functional of the non-parametric part
of the model. This adds some extra difficulty to checking the first condition of Theorem 1.1 so that we will need
some results from ergodic theory in our proofs. For completeness, we present here a brief summary of some basic

definitions and results from ergodic theory which we use in that chapter.

1.9 BRIEF PRIMER ON ERGODIC THEORY

The adjective ergodic stems from the Greek words ergon, meaning work and odos, meaning path. This term was
coined by Ludwig Boltzmann in the late 19th century while working on the kinetic theory of gases. Ergodic Theory
has a transversal presence in many fields of Mathematics and in Statistical Mechanics and deals mainly with the
long term evolution of the (average) behavior of dynamical systems. Ergodic Theorems give conditions under
which statements about this behavior can be made and began appearing in the literature in the 1930’s by the hand

of John von Neumann and George David Birkhoff.

In this section we consider a probability space (M, M, ), where M is a compact metric space, y a probability
measure on the Borel o-algebra on M and M is the completion of the Borel o-algebra on M with respect to p.
Let R be a mapping from M onto itself. Given x € M we call the sequence R’x, Rx, R%x, .. ., the trajectory of x
(under the action R); R¥ representing a k-fold composition of R with itself, R® the identity. This trajectory will
typically correspond to states of a (discrete) dynamical system with initial state x evolving according to R. The

time average of a p-integrable function f over a trajectory is the mean

Zn:f (R*x) (117)

i=1

|~

while its space average is the integral

One of the main questions of Ergodic Theory is to derive conditions under which the limit of the time average
(1.17) exists and when it is equal to the space average (1.18). This equality usually takes place under mild conditions
for y-a.e. initial state x and is the content of the classical Birkhoft-Khinchin Theorem (Theorem 1.3).

Write now RA = {Rx : x € A} and R'A = {x € M : Rx € A}. We say that y is invariant with respect to R if
for any A € M we have u(R™A) = u(A). We can now state the Birkhoff-Khinchin Theorem.

Theorem 1.3 (Birkhoff Ergodic Theorem [100])
Consider a measure space (M, M, u) where M is a o-algebra on M and y is a probability measure on (M, M),
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invariant with respect to R. Then, if f is a y-integrable function supported on M,
o pk
= f(R*x) — f*(x),
nia

as n goes to infinity, for some p-integrable function f* and py-a.e. x € M. Also f*(Rx) = f*(x) for p-a.e. x and
Juf (%) du= [y f(x)dp.

If in addition the mapping R is ergodic (see the definition bellow), then the function f* is y-a.e. constant
and so f* = [, f(x) du, y-a.e.. With the extra assumption that R is ergodic, the Strong Law of Large Numbers
can be shown to follow from this theorem (cf. [57]). In Chapter 2 we need, however, a uniform version of such a
result and therefore we present here the (stronger) conditions under which this can be assured.

If R is invertible, continuous, with a continuous inverse and both RA and R™' A are measurable then R is called a
homeomorphism. A measure y, invariant with respect to R now verifies, forany A € M, u(R'A) = u(A) = u(RA).
A set A € M is an invariant set if it satisfies R'A = A.

An invariant mapping R is said to be ergodic if each invariant set A € M verifies either y(A) =0 or y(A) =1.
It is known (cf. [22]) that for any continuous map R of a compact metric space onto itself, there exists a Borel
probability measure ¢ which is invariant with respect to R; if that measure is unique then R is said to be uniquely
ergodic.

We are now ready to state a uniform version of the Ergodic Theorem.

Theorem 1.4 (Uniform Ergodic Theorem [22])
Suppose R is a homeomorphism on a compact metric space M and y a Borel probability measure, invariant with

respect to R. If R is uniquely ergodic then for any continuous function f supported on M,

nif(ka)—>/Mf(x)dy, asn — oo,

uniformly over all x € M.

An example of a setup where this theorem can be applied is the following. For 7 > 0 take M = [0, 7), let M
be the Borel o-algebra on M and let u be the uniform measure on [0, 7) such that its density w.r.t. the Lebesgue

measure is identically 77!

. Consider now, for any T > 0, the mapping R : [0, 7) ~ [0, 7) definedas Rx =x + T
(mod 7). This mapping is called a rotation of the circle and is clearly a homeomorphism. Further, if T/7 is an
irrational number, then y is the unique invariant probability measure with respect to R which implies that R
is uniquely ergodic (cf. [22], Chapter 3). Theorem 1.4 can then be applied to conclude that for any continuous,

Lebesgue-integrable function f,
n 1 T
Y f(Rx) — = [ f(x) dx,
nig 7 Jo

as n goes to infinity, uniformly over all x € [0, 7). We use this result in Chapter 2.

These rotations also play an important role in the generation of pseudo-random numbers. The value x is then
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called a seed and for an appropriate choice of a value for T and 7, the resulting trajectory (77'R¥x : k € Ny) can
be used as an “approximation” for a sequence of uniformly distributed numbers on [0,1). It is also possible to use
mappings of the type Rx = Tx (mod 7). The two resulting procedures to generate pseudo-random number are
usually called congruential generators [80]. In practice, selecting a good combination of seed, T and 7 is quite
important for the quality of the resulting sequence as random numbers and consequently for procedures in which

they are used such as Monte Carlo simulation methods.

1.10 STOCHASTIC APPROXIMATION & TRACKING

Up to now our focus has been on estimation problems and the asymptotical properties of estimators. Typically,
as the sample size grows, we are capable or producing more accurate estimates for the parameter indexing the
distribution of the data. This is possible since as more data is collected it becomes evident that some values of the
parameter are unlikely to have produced the data we have observed. This narrows down the likely parameters in

the model to be producing the data, resulting in better estimates.

We can also consider a more general, non-static, tracking setup where it is natural to see the observations as
a time series. We still collect data from a fixed model, but the parameter indexing the distribution of the data
changes with time. Now there is no longer (necessarily) accumulation of information about some fixed, “true”
parameter and the focus shifts from producing estimators to producing sequences that track the time-changing

parameter.

The natural type of tracking algorithms are recursive ones: at each time point, we update our current approxi-
mation based on newly observed data and the structure of the model. The information which is implicitly being
accumulated and which allows us to assure some level of precision for the algorithm will come from a) the fact
that the model is assumed to have finite memory and b) the parameter indexing the distribution of the data is
changing “slowly” such that, in some sense, past observations still contain relevant information about the current
value of the time-changing parameter. The algorithms we propose in Chapter 5 and Chapter 6 can be seen as

Stochastic Approximation algorithms and we develop techniques to study several different tracking problems.

Stochastic approximation algorithms form a generic class of stochastic procedures for optimising functions
in a stochastic setting. They were introduced into the literature in the 1951 by Herbert Robbins and Sutton Monro
[76] who were interested in the problem of finding the root of a function which is observed with noise. Below we

recall the classical setting of Robbins and Monro.

Suppose that for some known value « in the range of a non-decreasing function M we want to solve the
equation M(x) = &, which is assumed to have a unique solution at x = 6. The function M cannot be observed
directly but instead we observe Y (x) with distribution function H(y|x) such that EY (x) = M(x). The simplest
example is

Y(x) = M(x) -a+§,

where £ is mean zero random noise. The naive approach to this problem would be to attempt to use Newton’s

method and make successive observations according to

Y(xp) -

, neNp,
M (xy) ’

Xn+l = Xn —
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for some initial xg, assuming the derivative of M exists, is known and M'(6) # 0. As pointed out in [64], even

under these generous assumptions, this would would result in

M(x,) -« B &,
M'(x,) M’(xn).

Xn+l = Xn —

This means that if x,, were to converge to 6 such that M(x,) - « and M'(x,) — M’(0) then this would imply

that £, — 0 which is not a realistic assumption in many contexts (e.g., for i.i.d. errors £, with positive variance).

Consider instead, for a positive sequence a,,, the following recursive algorithm as proposed by [76],
Xpi1=Xp+an(a-Y(X,)), neNy, (119)

for n € Ny with X arbitrary. The Markov Chain (1.19) constitutes the Robbins-Monro algorithm and the following

result can be found in [76].

Theorem 1.5 (Robbins-Monro [76])

Let M(x) be a non-decreasing function such that M(0) = « and such M'(60) exists and is positive. Let Y (x) ~
H(y|x) be a.s. uniformly bounded and such that EY (x) = M(x). If a,, is a positive (non-increasing) sequence such
that

[ee) [ee)
Zan:oo and Zaﬁ<00,
n=0 n=0

then for the sequence (1.19) it holds that E(X,, — 6)? converges to zero as n goes to infinity.

For a > 0 the sequence a, = a n”! verifies the conditions of the theorem. The function G(«&, Y (X,,), X,,) =
a — Y(X,) is called a gain function and has a simple interpretation in (1.19): if Y(X,) overshoots « then the
gain will be negative causing X, to decrease; if Y, (X, ) undershoots « then the gain will be positive and X,
gets increased. The decreasing sequence a, dampens the changes of the tracking sequence enough to ensure
convergence of the algorithm.

Different gain functions lead to different algorithms and a large number of problems can be tackled by selecting
appropriate gain functions. Consider the problem of recursively estimating the maximum M () of a function
M (x) with, as before, noisy observations Y (X, ) such that EY (x) = M(x). The following algorithm is known as
the Keifer-Wolfowitz algorithm[53] and can be used for this purpose

Y(X, +by) - Y(X, - by)

Xnn =Xy +ay b >
n

n e No, (1.20)

with X, arbitrary and where a,, and b,, are decreasing sequences.

Theorem 1.6 (Kiefer-Wolfowitz [53])
Let M(x) be a convex function with a unique maximiser at x = 6. Let Y (x) ~ H(y|x) such that EY (x) = M(x)

and such that E(Y(x) - M(x))2 is uniformly bounded. If a, and b,, are positive sequences which converge to zero
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as n goes to infinity such that

[eS) 0o oo a 2
Y ap=00, > ayby<oco and Z(—") < 00,
n=0 n=0 n=0 n

then for the sequence (1.20) it holds that E(X,, — 0)?* converges to zero as n goes to infinity.

The sequences a,, = nlandb, = n13 , for example, verify the conditions of the theorem.

These algorithms have been extensively studied in the literature and the field of stochastic approximation has
grown quite a lot since its inception (cf. [58] for a review). In Chapters 5 and 6 we propose and study a rather
general stochastic approximation algorithm for the case where it is only assumed that the observations come

from a time series.

1.11 BAYESIAN STATISTICS & NON-PARAMETRIC, ADAPTIVE ESTIMATION

Bayesian Statistics stems, in essence, from a different view on how data are generated from models. In the clas-
sical, frequentist, paradigm, data are assumed to be generated according to a fixed distribution in the model.
This is intimately connected with the view of probabilities as limits of the frequency with which a certain event
takes place. In the Bayesian paradigm, however, all probabilities are viewed as degrees of belief, making them
intrinsically subjective. In our setup, where distributions in a model are indexed by parameters, this would make
each distribution a conditional law on the data given the parameter. In a sense, this means that the parameters
themselves are seen as random, in which case data would be generated from the model itself and not from a fixed
distribution. Inference then reduces to computing the conditional distribution of the parameter, given the data,
a task that can be performed via Bayes’ formula which we reproduce below.

To make it precise, consider a model P = {Py : 6 € ©} with each distribution Py admitting a density py.
Assume that we have a vector of i.i.d. observations, X(") from the model P. The Bayesian approach starts with
the selection of a prior measure IT on ® (and so on P) which is then combined with the likelihood pé") - seen
now as the conditional density of the data, given the parameter — leading to a posterior distribution IT(-X("))

via Bayes’ formula:

) Jrp? (%) ani(e)

(71x™
7l Jo 5 (X)) dr1(0)

1.21)
for measurable sets 7 € ©.

Our use of Bayes’ formula in this thesis will be pragmatic and in line with [38], in that we will use (1.21) while
still assuming that the data are being generated from a fixed model Py. The prior measure encodes what is known
about the parameter before data is observed, for example, its range. Once data is observed, the formula (1.21)
prescribes how the prior should be updated to become a posterior measure. The posterior, being a conditional
measure on the space ® given the data X", can in principle be used for inferential purposes, say, to produce
Bayesian point estimates. Our treatment of Bayes’ formula is therefore essentially algorithmic in that we see it as
a means for making inference on the parameters; the prior will just be seen as a parameter of the algorithm.

If we are to produce estimators from a posterior measure, it is important to understand how such estimators

behave probabilistically, as the sample size grows. Under the assumption that the data are distributed according
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to some measure Py, we intuitively expect the posterior measure to concentrate around laws which are in some
sense close to Py; if we were then to draw a realisation from the posterior, this realisation would ideally be close
to 6y with high probability in much the same way that a realization from an estimator is expected to be close to
the parameter to be estimated. This is indeed the case for parametric models under very mild assumptions on
the prior (cf. [49]), but the same is not necessarily true for non-parametric models. For non-parametric models,
the choice of the prior distribution plays a critical role in determining the asymptotic properties of the posterior

distribution and therefore of any Bayesian estimators (cf. [29, 82]).

Before we can talk about statements concerning distances between data or between distributions, we must
endow the model P with a metric. For two densities pg and pg with respect to some common dominating measure

and 0, 9 € O, define the (squared) Hellinger metric,

h*(6,9) = 2(1- Eg\/pe(X)/ps(X)). (1.22)

Note that since we are working on a parametrized model, we ease the notation by writing h*(6, 9) instead of
h*(pg, py); we return to this point later. In [38], sufficient conditions on a prior IT are provided, under which the

corresponding posterior I1(-|X(")) verifies
T1(6 € ®: h(6,0) > Me,[X™) >0, asn— oo, (1.23)

for large enough M > 0, in Py-probability, where  is the Hellinger metric (1.22); we say that the posterior contracts
around 0 (or Py) at a rate ¢,, with respect to the metric . The interpretation of this convergence is that, as n
grows to infinity, most of the mass in the (random) posterior measure will, in Py probability, be concentrated in

a Hellinger ball of radius of order ¢, around the distribution Pj.

One can construct Bayesian point estimates with good frequentist properties from posteriors which verify
(1.23). The posterior mean can be shown to be an ¢,-consistent estimator for 8y so long as the left-hand-side
of (1.23) goes to zero fast enough as n goes to infinity (cf. [38]). If one considers a Hellinger ball of radius Me,,
centered at 6, in the support of the posterior, then the value @ for 6 which (nearly) maximises the posterior mass

in that ball is also an ¢,,-consistent estimator for 8; details can be found in [65]).

In many situations it might be difficult to construct these point estimates directly since the posterior will not
have an analytic expression. This happens whenever the integral in the denominator of the posterior measure
(1.21) is not tractable, which often happens for arbitrary priors. When working with parametric models, this
can sometimes be avoided by working with so-called conjugate priors - these are priors for which the resulting
posterior has a closed form distribution. Generally, this is almost never the case when applying Bayes’ formula
to non-parametric models, and we usually only obtain a posterior as a multidimensional integral. This was a
grave drawback to non-parametric Bayesian Statistics until the development of sampling techniques like Markov
Chain Monte Carlo, abbreviated MCMC, from the work of [68] and [42]. We will present a brief summary of

these algorithms in Section 1.12.

Sufficient conditions under which (1.23) can be shown to take place typically involve the Kullback-Leibler
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divergence and another Csiszar {- divergence, respectively,

K(6,9) = -Eglog(pe(X)/ps(X)), (1.24)
V(6,9) =Eglog® (pa(X)/ps (X)), (1.25)

and the corresponding Kullback-Leibler ball B(¢,0,) = {9 €®:K(0,00) <%, V(0,0) < 82}. Let, on a metric
space (A, d), the covering number N (¢, A, d) be the minimal number of d-balls of radius ¢ > 0 needed to cover

a subset A € A. The following theorem can be shown to hold.

Theorem 1.7 (Posterior contraction [37])
Suppose that for two positive sequences €, > &, such that né2 > land e, - 0 as n — oo, sets ®,, € ® and constants

C1, €2, €3, €4 > 0, the following conditions hold:

logN(sn,®n,h) < clnsfl, (1.26)
1(O\0,) < ce” (+H)me 1.27)
T1(B(&4, 00)) > cae "0 (1.28)

Then, for large enough M > 0, TI(0 € © : h(6, 6,) > Me,,|X(”)) — 0 as n — oo in Py-probability.

Note that if some semi-metric d verifies d(60, 0y) < h(6, 0y) for all 8 € ® such that h(6, 0) is small enough,
then for sufficiently large n we have {6 € ® : d(6,0,) > Me,} € {6 € ® : h(6,0y) > Me,} which implies that

under the conditions of Theorem 1.7,
H(@ €®:d(6,6)) > Me,,|X(”)) -0, asn— oo,

in Py-probability, for M as in Theorem 1.7. Upper bounds on the metric 4, and the discrepancies K and V, on
the other hand, are useful to express the conditions of the theorem in terms of simpler metrics - such as [, or L,
metrics, depending on the type of parameter set we work with — which makes verifying the conditions simpler.
We elaborate on this in Chapters 3 and 4.

A few words about the conditions of Theorem 1.7. First note that these conditions do not, in principle, impose
constraints on the dimension parameter set ® other than requiring it to admit a subset ®,, - sometimes called
a sieve — with finite entropy as prescribed by the entropy condition (1.26). This means that this theorem may be
applied to parametric’ models as well as to non-parametric models.

The sieve O, or equivalently, the sub-model P, = {pg : 6 € ©,}, can be seen as a sequence of good ap-
proximations for the true model Py. The remaining mass condition (1.27) requires that the prior should be mostly
supported on such a set ®,,. Another lower bound on the complexity of the approximating models is enforced
by the prior mass condition (1.28). Since 8 is an arbitrary point in ®, one way to verify this condition is to pick a
set ®, which is appropriately dense in ®, such that any 8y € ® B(&,, 8y) captures enough prior mass; this makes

condition (1.26) more restrictive, however. Another possibility is to pick a larger sequence €, but this deteriorates

*For parametric models this theorem might deliver sub-optimal rates. There are slightly stronger conditions which remedy this

(cf. [37]).
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the rate. This condition also suggests that it might be reasonable to pick priors that are in some sense uniform

over the parameter set © since the centre of the Kullback-Leibler ball is in principle arbitrary.

It is the interplay between these conditions that defines the range of rates which can be shown to be attainable
for a given prior. Alternatively, for a given rate, this interplay gives sufficient conditions for a prior to deliver that
rate. This result serves then both as a statement about the asymptotical behavior of a fixed prior but can also guide

us in the construction of priors with good (frequentist) asymptotical properties.

There are several different priors that can be put on non-parametric models; we mention but a few that we will
refer to again later on in this thesis. Perhaps the most straightforward prior we can consider on non-parametric
models is to take a process whose trajectories live, almost surely, on the parameter set ® and then take the law
of such a process as a prior on ©; these are called Stochastic process priors. Another possibility is to expand
the functions on the space ® on a particular basis (e.g. Fourier, splines, wavelets, Bernstein polynomials); we
then consider either the full basis or a truncated basis (where only the first basis functions are taken) and put
a prior on the coefficients of the chosen basis functions; these are usually reffered to as random series priors. It
is also common to use link functions, smooth, increasing, bounded functions, which serve the purpose of map-
ping the range of a random process onto ©. These can be used to enforce desired properties on the functions

on the support of the prior, such as positivity and boundedness, without having to manipulate the process directly.

The fact that any information about the parameter set may, in principle, be incorporated into a prior distribu-
tion is certainly an attractive feature, mainly in applications. Another reason which may account for the popularity
that Bayesian Statistics have gained in recent years, is the fact that it represents, in some sense, a unified approach
to inference: any unknown parameters of the model are endowed with a prior and Bayes’ formula produces a
posterior which can be used to draw conclusions on the unknown parameters. This makes, at least conceptually,
the construction of adaptive priors, for example, quite simple as we will see bellow. Obtaining point estimates also
becomes straightforward and the problem of establishing asymptotics for such estimates can often be reduced,
by use of consistency theorems such as the one above, to measure-theoretical considerations about the particular

prior measure being used and to studying the approximation properties of the sieves ©,,.

The problem of adaptive estimation, as seen in Section 1.7, consists of performing estimation over a large
family of models of the type ® 4 = Uyc4 4 where the order of the minimax rate r}; (©,) for each model O, is
potentially different. If we knew that the data were distributed according to a parameter with regularity « in the
model ®,, we could pick an appropriate prior I1, and use the resulting posterior to derive an estimator which
achieves the rate r, (©,). For the examples seen in the previous paragraph, this choice would involve considering
a specific number of basis function depending on «, enforcing the values of the coefficients on a basis to decay at a
certain rate depending on «, or simply picking processes whose trajectories match the regularity of the functions
in ®4. An adaptive estimator must however attain the rate r‘ﬁ(@a) when 0y € ©, without knowledge of the
smoothness «; we also say it is rate-adaptive. If we know of a prior IT, whose respective posterior IT, (-X("))
contracts at a rate r;(®,) when the data comes from a model in ®,, then we may treat « itself as a unknown,
so-called hyper-parameter of the model, and endow it with a hyper-prior, in effect mixing the several priors IT,.
If the hyper-prior is chosen in an appropriate fashion, the resulting prior, which no longer depends on «, will
result in a posterior which attains the rate 74 (®,). (In this case we refer to both the prior and the posterior as

being adaptive).
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1.12 MARKOV CHAIN MONTE CARLO SAMPLING

As mentioned in the previous section, it is common in non-parametric Bayes for the normalization constant
of the posterior distribution (1.21) not to be known explicitly. In these cases one can use Markov Chain Monte
Carlo (MCMC) samplers to obtain approximate samples from the posterior, which can then be used to compute
Bayesian estimates. MCMC samplers are Markov chains constructed to have as stationary distribution a chosen
target distribution which is known only up to a constant. These samplers are closely related to simulated annealing
optimization procedures and acceptance-rejection methods [78]. The chain is started from an arbitrary state and
evolves according to the following procedure. Suppose that the current state of the chain is 8, and that the target
distribution admits a density f with a support whose elements all have the same dimension. The next state of the
chain is determined in two steps: first, an arbitrary state, called a proposal, is generated from a fixed, yet arbitrary

distribution 9 ~ g(+|@), from which we can sample directly; secondly, this state is either accepted with probability

_ i [y £(9)g(819)
A(6 - 9) = min (1, f(0)g(9|0))’ (1.29)

in which case the next state of the chain is 9, or rejected, in which case the next state of the chain is 0. It is
straightforward to check that the transition kernel which we just described is, under very mild assumptions,
reversible and has f as (unique) invariant, stationary density: it is sufficient (cf. [77]) to require the support of f

(call it supp f) to be connected and for the support of the proposals to cover the support of f, i.e.

U suppg(6) 2 supp f.
Oesupp f

It is clear from its definition that the probability (1.29) can be computed even if the density f is known only
up to a constant; in fact, we only need to be able to compute the ratios f(9)/g(9|0) up to a constant that does
not depend on 6. The Markov chain whose kernel we just described represents the classical formulation of the

Metropolis-Hastings algorithm [42].

Using this mechanism, we can now sample from a posterior distributions, for example. One possibility is pick
£(9]0) =T1(9) in which case the ratio in (1.29) reduces to a likelihood ratio, namely,

p?“X“U)_

Py (X™)

This is a particular case of what is called an independent Metropolis-Hastings sampler since the proposals are

A(6 — 9) = min (1,

independent of the current state of the chain. Another popular choice are the so-called random walk Metropolis-
Hastings samplers: we take 9 = 6 + 0&, where 0 > 0, & ~ g(+), a zero mean distribution, symmetrical around the

origin. Proposed states are in this case perturbations of the current state and the acceptance probability becomes

A(6—9) :min(l 1'[(9|X(”)))

" I(ex™)

The standard deviation o becomes a parameter of the algorithm and typically needs to be picked according to

the dimension of the support of the target distribution.
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In this thesis, we also consider adaptive priors whose use we exemplify with both real and simulated data. As
mentioned in Section 1.11, adaptation in the Bayesian setting is usually achieved by mixing different priors, each
of which is optimal over a fixed model in the family. This means that the support of such a posterior is the union
of spaces whose dimension might be different and the sampler outlined above cannot be used. For such situations
we must employ so-called reversible jump Markov chain Monte Carlo samplers (cf. [40, 41]).

Reversible jump MCMC samplers generalize the Metropolis—Hastings samplers presented above in the sense
that a) they allow for different types of moves for the chain, each corresponding to a different transition kernel
and b) the kernels are defined in a more general way such that moves between states with different dimension
are possible. The latter is the main point of interest of these samplers — their capability of producing samples
from adaptive posteriors. To set up a reversible jump MCMC sampler we may construct a countable number of
transition kernels. Generating the next element of the chain then has an extra step corresponding to selecting
which transition kernel to use. We present here a specific sampler driven by the generation of random numbers
which can be found in greater detail and generality in [41].

Suppose that the support of the target distribution is contained in the family of models ® = Uy 4 ®q; call a
generic state of the chain («, 8, ) where the subscript « indicates the model index, such that 6, belongs to ©,
which is a space with dimension d,. We index each different type of move we wish to consider by j € 7, a countable
set. Next, we pick probabilities p(j, &, 0 ) such that for each pair («, 04 ), 3. je7 p(j, @, 0«) = 1. These probabilities
are parameters of the sampler. Given the current state of the chain, («, 0), the first step in producing the next
state is to select which type of move j € J will be performed. This is done at random according to p(-, «, 0).
Once a move type, say j, has been selected, we pick the next state of the chain by constructing a random proposal
(B, 9p) according to the j-th kernel - a proposal which, as before, will either be accepted or not. We construct
this proposal by first selecting two numbers r,, rg € No such that r, + dy = r5 +dg. We then generate two random
vectors u ~ gjr, (-) and v ~ hj, () of dimension r, and g, respectively, and take (B, 95) such that 9 verifies
(95,v) = p;j(04,u), where p;(-) is, for each j € 7, a diffeomorphism. These extra “dummy” coordinates u and
v are introduced to do what is known as dimension matching, allowing the chain to effectively jump between
two “augmented” states («, 04, u) and (B, 9, v) of equal dimension. Once the jump has been performed, these
extra, auxiliary coordinates may be ignored. If again f represents the target density, this proposal is accepted

with probability

F(B:9p) p(j B 9p) hjry (V)
’ f(oc, ea)P(j’ «, Boc)gj,ra (u)

a(Sﬁ,V)
0(0,,u)

Aj((a, 04) > (ﬂ,ﬂﬁ)) = min (1

) . (1.30)

If this proposal is accepted, then the chain jumps to the state (3, 93), otherwise remaining at state (&, 6 ). (The
factor on the far right is the absolute value of the determinant of the Jacobian matrix of the mapping p ;). Note that
(1.30) generalizes (1.29). This particular choice results in a Markov chain that is reversible and has f as stationary

distribution. We will present two concrete samplers in Chapters 3 and 4.

1.13 OUTLINE OF THIS THESIS

Here we describe in a bit more detail the contributions contained in this thesis. Most of the content of the

remaining chapters of this thesis is based on [7-12]; some extra material was added to Chapters 3, 5 and 6 which
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is not in the mentioned references.

1.13.1 PERIOD ESTIMATION FOR CYCLICAL INHOMOGENEOUS PO1ssON PROCESS

In Chapter 2 we treat a semi-parametric estimation problem: given an inhomogeneous Poisson process with a
periodic intensity function, estimate its period. We construct an M-estimator for the period; the intensity function
is treated as an infinite-dimensional nuisance parameter. We establish the consistency of the estimator and in
passing address the issue of the identifiability of the period, which for this problem cannot be taken for granted.
In the literature, the issue of the identifiability of this parameter is mostly glossed over but we treat it here in
detail based on a study of the Ergodic behavior of the expectation of the criterion function used to define the
M-estimator. We close this chapter by presenting two numerical studies. The first is based on synthetic data. We
look into the performance of the estimator by comparing it with already existing estimators in the literature. In
the second study, we apply the estimator to a large, real data set of arrivals of calls to a bank’s call center which

we model as a Poisson process. This chapter is based on [11].

1.13.2 BAYESIAN SMOOTHING FOR INHOMOGENEOUS POISSON PROCESSES

In Chapter 3 we continue the study of the call centre data set used in Chapter 2. Having concluded that this data
has daily periodicity, we apply Bayesian non-parametric methods to estimate the daily intensity of the data. This
is done by using the adaptive, spline based priors that we present in Chapter 4. The estimates are obtained via a
reversible jump Markov Chain Monte Carlo sampler designed specifically for these spline priors. The analysis of
this dataset is used to illustrate the general theoretical results that we establish in this chapter. These results can
be used to make non-parametric inference on the intensity function of a Poisson process. They are formulated
in such a way that, when combined with already existing results about specific priors (such as the ones we prove
in Chapter 4), they give upper bounds on the contraction rate of the resulting posteriors. We also obtain similar
results for general stochastic process priors, for when link functions are used and for when a prior is put on the
scale of the unknown intensity function. We exemplify the use of our results on two specific priors: the spline
prior used in our numerical study and a prior on monotonous functions based on the Dirichlet process. Our
results apply to situations when the full process is observed but also when only a discretized version of the process

is observed. This chapter is an expanded version of [12].

1.13.3 ADAPTIVE PRIORS BASED ON SPLINES WITH RANDOM KNOTS

In Chapter 4, we establish theoretical properties for priors constructed from splines with inhomogeneous knots
such as the ones used in Chapter 3. More specifically, we consider priors obtained by endowing the number and
locations of the knots of the spline, as well as its coefficients, with priors. These types of priors are widely used in
practice but contraction rates for them had not yet been established. We give sufficient conditions on hierarchical,
adaptive spline priors, such that the resulting posterior attains the minimax rate of contraction up to alogarithmic
factor. These spline priors can be used to make inference on a wide range of models. We give examples of specific
priors on the knots and coefficients for which our conditions hold and do a numerical study to illustrate the
advantage of endowing the location of the knots with a prior when estimating spatially inhomogeneous functions.
This chapter is based on [8].
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1.13.4 TRACKING OF CONDITIONAL QUANTILES

Chapter 5 contains results on quantile tracking. The problem of regression consists of estimating the conditional
mean of a response variable given the values for predictors of this quantity. Quantile regression corresponds
to estimating a conditional quantile (e.g., the median) of the response variable, rather than its mean, resulting
in estimates that are more robust. By estimating quantiles of different levels simultaneously, one can obtain a
comprehensive description of the response variable. In this chapter we assume data is collected sequentially, i.e., is
a time series, and we also allow for conditional dependences between the distribution of each observation and the
previous ones. This a more general setting than that of just quantile regression based on independent observations
since we allow the quantile of interest to depend on the past of the time series. We propose a recursive algorithm
for approximating a quantile of our choice (not necessarily of a fixed level). Our main result is the derivation
of general non-asymptotical, uniform bounds on the approximation error of this tracking sequence. We specify
these bounds for different variational setups for the quantile of interest, covering in particular the important case

of non-parametric quantile regression. This chapter is based on material from [7] and [9].

1.13.5 TRACKING OF DRIFTING PARAMETERS OF A TIME SERIES

We consider in Chapter 6 a general model, a time series with arbitrary memory that is allowed to depend on a
time varying, multivariate parameter; we propose an algorithm to track this drifting parameter. It is not required
for this growing statistical model to be known completely. Instead, we just assume that a gain function is available
which can be used to update an arbitrary approximation for parameter of interest based on a new observation
from the model and an appropriate step sequence. This gain function can be used to define a recursive algorithm
for tracking the drifting parameter. Our main result is similar to that of Chapter 5 a non-asymptotical, uniform
bound on the approximation error for this estimator. For different variational setups for the drifting parameter we
specify how this error bound can be minimised by an appropriate choice of the step sequence of the algorithm. We
show how gain functions can be constructed for specific models and how our results generalize several classical
stochastic approximation algorithms in a setting where the parameter of interest is not static. Some concrete
examples are treated and we study in more detail an autoregressive model with drifting parameters. We also

present some numerical results. This chapter is based on [10].
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Period Estimation for Cyclic

Inhomogeneous Poisson Processes

P OISSON PROCESSES are sometimes used to model periodic, time-varying phenomena. In this chapter we
propose and study a semi-parametric estimator for the period of a cyclic intensity function of an inhomogeneous
Poisson process. No parametric assumptions are made on the intensity function which is treated as an infinite-
dimensional nuisance parameter. We propose a new family of estimators for the period of the intensity function,
address identifiability and consistency issues and present simulations which demonstrate good performance of
the proposed estimation procedure in practice. We compare our method to competing methods on synthetic

data and apply it to a real data set from a call center.
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2.1 INTRODUCTION

The Poisson process is a widely used model for point or count data in temporal and spatial settings, for example
in areas such as communication, meteorology, seismology, hydrology, astronomy, biology, actuary sciences etc.
Sometimes the occurrence of the events exhibits an intrinsic periodic behavior which is modeled by a periodic
intensity function of the underlying Poisson process. In this paper we study the problem of estimating the period
of the intensity function of an inhomogeneous Poisson process. We propose estimators, apply them to simulated
and real data and study identifiability and consistency in an asymptotic setting where the observation time, i.e.
the trajectory length of the inhomogeneous Poisson process, increases indefinitely.

Estimating the period is an interesting and important problem in itself but it is also an essential ingredient for
non-parametric estimation of the intensity function. Existing methods for estimating the shape of the intensity
function are based on the knowledge of the period and one needs a reliable estimator of the period prior to
constructing a (non-parametric) estimator for the intensity function itself (e.g. [44-46, 62, 63]). The estimation
problem can formally be stated as being a semi-parametric problem where we wish to estimate a one-dimensional
parameter (the period) in the presence of an infinite-dimensional nuisance parameter (the intensity function).

The literature about the specific problem of estimating the period is not abundant. Vere-Jones used a spectral
approachin [99] to create an estimator based on the maximum of the Bartlett periodogram; see [79]. A parametric
assumption is made in [99] about the shape of the intensity function and the proposed estimator performs well
only if the true intensity function has a shape similar to the assumed one, cf. [4].

In [67] and [43] the authors present a semi-parametric estimator. Here a trajectory of an inhomogeneous
Poisson process is partitioned into intervals of some fixed length. The mean quadratic deviation between the
number of events in each interval and the mean number of events taken over all intervals is considered as a
function of the interval length. In [67] it is argued that this criterion function should have a local minimum
at the point corresponding to the period which gives a method for constructing an estimator. In [4], however,
some serious flaws of this estimator were discovered. There some modifications of the estimator from [67] and
[43] were proposed that perform better in practice but no theoretical results are presented for it. An extensive
comparative study of the above-mentioned methods (which is contained in Table 2.4.1 ahead), on simulated data
from a range of test intensity functions can be found in [4]. Even the most robust estimator did not produce
satisfactory results for all test functions simultaneously.

If one is to construct a more effective estimator, then it is important to understand why previous estimators
perform poorly in certain situations. The estimators described above essentially work by detecting a value 7
such that a fixed Poisson point process pattern emerges in the data when considering a partition of the observed
trajectory into time intervals of length 7. While being natural, such an approach has its limitations. Firstly, a pattern
will also emerge if a multiple of 7 is considered. Secondly, the criterion function, based on whose minimization
the estimator is obtained, is not only minimized at the point 7 corresponding to the period but also at any value «
such that the mean number of Poisson events over time intervals of length « is fixed, raising issues of identifiability.
As seen in [4], it is quite simple to design intensity functions for which the corresponding criterion function has
zeros at fractions of the period as well.

In this chapter, we present an alternative M-estimator for the period. To make our approach more flexible,
we introduce an auxiliary parameter T > 0 into the method and partition the observation time into blocks of

length T'. For each block we then compare the number of events in the first 6 time units and the last 6 times
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units. This will lead to a criterion function for which we can prove convergence to a limiting function whose
zeros are related to the unknown period in an explicit way. The estimator is then defined as a near zero point of
this criterion function, as it converges to zero at the multiples of the period. One needs to make a proper choice
of the parameter T in the method to make sure the period is identifiable and the resulting estimator is consistent.
We discuss this issue in more detail in the next section, where we also propose a couple of different practical
approaches how to choose this parameter. The main idea is to exploit the fact that we can vary the auxiliary
parameter T and study the behavior of different data-based functionals of the criterion function as functions of
parameter T.

The paper is organized as follows. In Section 2.2 we describe our model, the assumptions and the estimators.
Section 2.3 addresses identifiability and consistency, subsection 2.3.1 is dedicated to establishing the convergence
of the criterion function, subsection 2.3.2 to identifiability of the period and subsection 2.3.3 concerns consistency.
The last section, Section 2.4, contains numerical results. First we perform the simulation study from [4] for our
estimator in subsection 2.4.1 and then we apply our estimator to a real data set in subsection 2.4.2. The first
five columns of Table 2.4.1 contain the simulation study from [4] for certain test intensity functions and the last

column shows the performance of our estimator for the same intensity functions.

2.2 ESTIMATION PROCEDURES

2.2.1 PRELIMINARIES

We suppose that we observe a trajectory (N; : t € [0, 1)) of an inhomogeneous Poisson process N with intensity
function A. In other words, N is a counting process with independent increments such that Ny = 0 and for all

0 < a < b, the increment N}, — N, has a Poisson distribution with parameter

fabxl(t) dt.

From now on we assume that the intensity function A is continuous, bounded away from both 0 and infinity,
and 7-periodic for some 7 > 0, i.e. A(7 + t) = A(¢) for all ¢ > 0. The number 7 is assumed to be the minimal
period, i.e. there exists no ¢ < 7 such that A is o-periodic as well. Note that the assumptions exclude the case of
constant A, which is the case of a homogeneous Poisson process. Our goal is to estimate the parameter 7 from
the observations (N; : t € [0, 1)), without knowledge about the shape of A.

The first step in the construction of our estimator is to fix an auxiliary number T > 0 and to split up the
observation time interval [0, #) into |#n/T| intervals of equal length [(i = 1)T,iT),i = 1,...,|n/T], possibly
disregarding the last smaller piece (here, as usual, |a| = max{k € Z : k < a}). For each of these intervals, we
are going to compare the number of events occurring in the first 6 < T/2 time units to the number of events

occurring in the last 6 time units. By the basic properties of the Poisson process, the expected difference of these

(i-1)T+6 iT
f( A(t) dt - fiHA(t) dt. 2.1)

i-1)T

two numbers is

Now the periodicity of the function A implies that integrals of A over two different intervals coincide if the length
of the intervals are both equal to the same multiple of the period 7, or if the intervals have equal length and they

are a multiple of the period apart. These simple facts imply that if T is such that (I -1)7 < T < Iz for some [ € N,
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then the quantity in (2.1) vanishes for 0 equal to each of the values
0<T-(I-Dr<r<T-(1-2)1<21<...<T-(-k)r<kr<.... (2.2)

We will prove below (see Theorem 2.2) that under appropriate assumptions on the auxiliary parameter T, these

are in fact the only points at which the function

1 /1] (i-1)T+6 iT 2
W@ 1) = [ Zl (f(,-_m )L(t)dt—fiT_G/\(t)dt) (2.3)

vanishes for all n.
In view of this, we base our inference on a criterion function that estimates the function y, from the data.

Specifically, we define the random function ¥,, on [0, T/2] as follows:

[n/T] 2
‘PH(G,T):ﬁ > (N7 (6.T) - N7 (6, 7)) - N7 (0,T) - N} (6,7),

where
N; (6, T) = N(i—iyr+9 — Ni-pyr

is the number of counts in the first 6 time units of the interval [(i = 1) T, iT), and, similarly,
N7 (0,T)=Nir - Nirg

is the number of counts in the last  time units of that interval.
The proof of Theorem 2.1 below shows that ¥, indeed consistently estimates v, in the sense that, for fixed 6
and T, ¥, (0, T) — v, (0, T) converges in probability to 0 as # goes to infinity.

2.2.2 PROCEDURE USING A-PRIORI KNOWLEDGE ABOUT THE PERIOD

In this section we suppose that we know a-priori that 7 € [a, b], where 0 < a < b < 2a. Then if we pick an auxiliary
parameter value T € (b,2a) we have that 7 < T < 27and T - 7 > T — b > 0. It will be shown below (see Theorem
2.2) that, under the technical condition that T/ is irrational, the criterion function 6 — ¥, (6, T') converges in
probability, uniformly on [T - b, T — a], to a smooth, nonnegative function y that has a unique zero at the point

T — 7. This observation motivates the definition of the estimator
2y =1a(T) =T -0, (2.4)
where 0, is a (near) minimizer of 6 — ¥, (8, T)| on [T — b, T — a], i.e. a point such that

v, (0, T)< inf |¥,(6,T 1. 2.5
¥ ( )] ee[Tl_r;),T_u]l (6, T)|+o0p(1) (255)

Such a point always exists since the function 8 — ¥,,(0, T') is almost surely a piece-wise constant function which

changes values only at finitely many points. (The op(1) term can give some added flexibility).
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In Section 2.3, we prove that 7, is a consistent estimator for the period 7, provided the ratio T/7 is irrational.
This condition arises when studying the limit of the function v, (6, T') defined by (2.3), as n - oo. The limit
function y(0, T) given below by (2.8) is found by relating v, to the circle rotation R : [0,7) — [0, 1), R(x) =
x + T mod 7. It is well known that the ergodic behavior of this map depends on whether or not T/7 is rational;
see [22]. Although formally needed for the consistency proof, the condition that T/ is irrational does not seem
to be an issue in actual computations. Simulations indicate that any choice T € (b, 2a) yields a proper estimator
for the period. Moreover, this issue can be avoided by randomizing the choice of T, for instance by taking it to
be uniformly distributed on (b, 2a), independent of the data (N, t € [0,#)), cf. Corollary 2.1 ahead.

Implementation of the outlined estimation procedure is rather straightforward. Figure 2.2.1 illustrates the
method for a simulated data example. We took a = 5, b = 8,and T = 9 and simulated a sample path of an

inhomogeneous Poisson process on the time interval [0, n] with n = 100T = 900 and intensity function
A(t) =5.5+5cos(t), (2.6)

which has period 27. The corresponding criterion function 8 — ¥,,(0, T') is shown on the interval [2,4.5]. The
function is minimal at the point 8 = 2.7260, which yields the estimate T — 6 = 6.2740 for the period 7 = 27 with

an absolute error of 0.0092.

Criterion function for T =9 and n = 900

9000
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7000
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4000

‘PQOO(O, 9)
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Figure 2.2.1: For each 6, the criterion function ¥, (6,9) is an average discrepancy between Poisson counts on specific
intervals. By construction, if 0 is close to 6y = T — 7 discrepancies are low since we are comparing i.i.d. Poisson counts.
Asymptotically the criterion is minimized at 0, from which we can estimate 7 since T is a parameter of our choice.
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2.2.3 PROCEDURE WITHOUT A-PRIORI KNOWLEDGE ABOUT THE PERIOD

In many applications it is not possible, or undesirable, to assume a-priori that the period 7 belongs to some given
compact interval. This leads to the problem of choosing the parameter T in the estimation procedure described
above. In this section we propose alternative procedures which involve letting the auxiliary parameter T vary in
a certain range. These procedures only involve choosing appropriate upper and/or lower bounds for the range of
values for T being considered, which is less demanding. We propose two different approaches. Both exploit the

fact that the function 6 — |¥, (6, T)| has approximate zeros at the points given by (2.2).

A GRAPHICAL METHOD

Notice that if k7 < T < (k +1)7 for some k € N, then, according to (2.2), the first positive approximate zero of
the function |¥,, (6, T)| should be T - k7. If we now denote the first positive approximate zero of 8 — |¥,, (6, T)|
by 81, then plotting T against T — 7 should give a graph that approximately (for T > 7) looks like a staircase
function, with jumps at all multiples of the period, the jump height being always approximately equal to the
period as well.

Concretely, we propose the following procedure:
1. Choose lower and upper bounds 0 < § < T for the range of T’s that will be considered.
2. Forevery T € [8, T], define 07 = min arg minge[5/2,7/2] |‘I’,,(9, T)|

3. Plot the function F,, : [8, T] — [0, c0) defined by

Fo(T)=T-0r. 2.7)

Among other things, we will prove in Section 2.3 that for every T such that T/7 is irrational and k7 < T <
(k+1)7for k € N, F,(T) converges in probability to k7 (cf. Theorem 2.4). Hence for § > 0 small enough and
T > 1, the function F, will asymptotically look like the step function F(T) = | T/z|z.

This provides a graphical method for estimating the period 7 by reading off the jumps heights and locations
from the graph of F,,. Figure 2.4.1 displays the graph of F, for the real data set considered in Section 2.4.2. In
practice one would compute F,,(T) for all T on a grid on an interval interval [§, T].

If T < 7, then the function 6 — |¥,(0, Ty)| has, at least in the limit, no zeros in the interval [§/2, Tj/2].
Therefore, for points Ty on the T-axis of Figure 2.4.1 for which 6 — |¥, (6, T})| is above a positive threshold on
[8/2, Ti/2], the point ( Ty, 0) is added to the graph instead of (T, F,(Tx)). To determine the appropriate thresh-
old, it is informative to look at the minimal values of the criterion function m,,(T) = minge[s/5,7/2] [¥n (0, T)| as
well. In view of the results in Section 2.3, m, (T) is expected to be away from zero for § < T < 7 as the limiting
function 6 ~ |y(6, T)| does not have zeros for T € (0, 7). As soon as T exceeds 7, the minimal value m,,(T)
should drop close to zero.

The parameters 8 and T should therefore be chosen in such a way that the first is sufficiently small and the
second is sufficiently large to make sure the true value 7 is between & and T. In fact, this can again be done by
looking at the graphs of the functions F, and m,, while varying the parameters § and T. As we have already

mentioned, the function m,,(T) changes from being distinctly positive to approximately zero at T ~ 7 and stays
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there from that point on, while the function F,(T) should have a staircase structure from that point so that
the stair width equals to its height. If § is too big (and T > 7), we will see the function m,(T) close to zero
immediately at T = 8. If T is not big enough, we will not see distinct stairs in the plot of the function F,(T).
Simulations suggest that there is not much difference between the estimators of the period for different values
of T'aslongas T € (7,27) and T is away from the endpoints 7 and 27, the same holds for the multiples of the

period.

AVERAGING OVER T

As we have already mentioned, our method is based on the fact that the criterion function ¥,(0, T') has ap-
proximately the same zeros as the limiting function y(6, T') defined by (2.8). The bivariate limiting function
(0, T) —» w(0, T) will have zeros on the plane (6, T) at all points on the lines defined by (2.2), i.e. 6 = k7 and
0 = T - It fork, I € N; see Figure 2.2.2 for the limiting criterion function corresponding to example (2.6). Notice
that the common zeros of y(6, T;) and y(0, T») for different Tj, T, will only be on the horizontal lines 6 = kt,
k € N, unless T; and T; are separated by a multiple of the period 7.

The above observation brings us to the following idea. To avoid the issue of the choosing the parameter T,
one can design another criterion function by averaging the criterion functions ¥, (60, T') over a grid of values
for T. Pick a sufficiently large T to make sure T > 7, takea grid 0 < T} < T < ... < Ty, < T and consider
a function M, (6) = L > |¥,(6, T;)|. Theorem 2.1 ahead implies that if the T;/r are irrational (which can
again be accomplished by randomization for instance), then M, converges in probability to the function M(6) =
L (6, T;). If at least one distance between the values from the grid {Ty, k = 1,...,m} is not a multiple of
the period 7, then this limiting function has zeros only at multiples of 7. Therefore, the function M, (6) can be
used as a new criterion function. The smallest (separated from zero by a positive value) argument of this function
will provide an estimator for the period 7.

This method can for example be used on a portion of the trajectory of the inhomogeneous Poisson process, to
obtain a preliminary estimate for the period which in turn allows the identification of an interval [ a, b] containing
the period and such that 0 < a < b < 24, as it is required in the construction of the estimator (2.4). Once such an
interval is chosen, one can use the rest of the data for the construction of the estimator (2.4).

Figure 2.2.3 shows the criterion M, for the same simulated data example as in Section 2.2.2, where we took
T =75, (n = 900 as before) and the uniform grid Ty = kT/m, k = 1,. .., m, with m = 100. The function is plotted

on the interval [0, T/4]. We obtain in this case 6.2815 as preliminary estimator for 7.

2.3 IDENTIFIABILITY AND CONSISTENCY

2.3.1 UNIFORM CONVERGENCE OF THE CRITERION FUNCTION

In this section we establish the uniform convergence of the criterion function 6 — ¥, (0, T) to the limit function
0 — (0, T) defined by

1 T t+0 t+T 2
(6, T):;fo (ft )L(s)ds—fHT_G/\(s)ds) dr. (2.8)
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Limiting criterion function y(6,T)

5w T
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Figure 2.2.2: Contour plot of the function (0, T) ~ (6, T) corresponding to A(¢) = 5.5 + 5cos(t) on the set 8 < T/2.
This function is null over the horizontal lines 6 = k7 and the oblique lines 6 = T - k7.

Integrated criterion and n = 900
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Figure 2.2.3: Example of a criterion function M,,(0), which approximates the integrals of the function (6, T') depicted in
Figure 2.2.2 over horizontal lines, i.e. M, (8) ~ [ ¥,(6, T)dT.
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Theorem 2.1 (Uniform convergence of the criterion function)
For all T > 0 such that T/t is irrational,

sup
6¢[0,T/2]

¥, (6, T) - (6, T)| )

as n — oo.

Proof: We write ¥, = ¥}, — ¥,,,,, where

/7]
Wi, (6, T):WlTJ ;T((N,.(e, T))2+(N;(9,T))2),
/]
qu"(e,T):ﬁ > (2N7 (0, TN (0, T) + N7 (6,7) + N7 (6, T)).

Note that both the 6 + ¥; ,,(0, T) are non-decreasing, cadlag functions. For the limiting function y we have a

similar decomposition ¥ = y; — ¥, where

1//1(9,T):%fof(fttw/\(s)ds)zdwr%for([t+eA(s)ds)dt
+%for(ft;;us) ds)zdt+%/;(ﬁ::@)&(s)ds)dt,

v2(6, T):%/(;T(ftHQ/\(s)ds/;:_Te)t(s)ds) dt
+%fOT(ftt+0)L(s)ds)dt+%fOT(/:;_TBA(s)ds)dt_

The functions 6 ~ y;(8, T) are non-decreasing as well as differentiable.

Suppose we establish that, for j = 1,2 and every fixed 6 € [0, T/2],
¥in(0,T) 2, v;(0,T), as n— oo, (2.9)

Then the theorem would follow. Indeed, the point-wise convergence in probability, together with almost sure
monotonicity (also cadlag) and monotonicity and boundedness of the limit y;(6, T), imply uniform convergence
in 6. We skip the details of the proof of this fact since it can be proved exactly in the same way as the Glivenko-
Cantelli Theorem with the only differences that the (distribution) functions in the Glivenko-Cantelli Theorem

are bounded by 1 and the convergence is in almost sure sense.

Thus, it remains to show (2.9). In what follows, we give the details for j = 1, the other case is completely

analogous. By construction, the random variables N; (6, T') are independent Poisson variables with parameters

(i-1)T+6
f( A(t) dt

i-1)T
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and the N (0, T') are independent Poisson variables with parameters

iT)Ltdt
/ine (t) dt.

It follows that ¥, , (0, T') has expectation

[n/T]

1 (i-1)T+6 2 (i-1)T+6
Wa(6.1)= Zl ((f( A(t) dt) +/(H)T A(t) dt

T
+( fi:é))t(t) dt)2 + fi;fek(t) dt).

We have

|n/T]

(0. T) = 10 (6.T) - n/TZ( [(0.1)) - (N(H)))

1

Lo
Ln;TJ > ((N*(e T)) E(N7(6,T)) )

and the centered variables appearing in each sum are independent and have a variance that is bounded by a fixed

polynomial function (of degree four) of

(i—l)T+0A J d iT 1 J
t)dt t)dt.
[( (dt and [ A(®)

i-1)T

Since 6 < T/2 and A is bounded and periodic, the latter quantities are uniformly bounded. By Chebychev’s
inequality, it now follows that
P
\Ijl,n(e, T) — l//l)n(e, T) — 0

as n — oQ.

To complete the proof (for j = 1) it remains to show that, for any fixed 6 € [0, T/2], y1,,(0, T) = v1(0, T) as
n goes to infinity. Define the map R : [0, 7) — [0, 7) by R(¢) = (T + t) mod 7. Denoting iterations of R by R', i.e.
R is the identity, R! = R, R? = R o R etc., we can then, by the periodicity of A, write
0.1)- 3 i), 6)
1//1, > T = h R17 0 > >
! [n/T] F

where

h(t,@):([t+el(s)ds)2+[tt+6/\(s)ds+(ft; M) ds) +ft:;_Te/1(s)ds

It is well known (see for example [22]) that the condition that T/ is irrational implies that the circle rotation R
is uniformly ergodic, and that its unique invariant measure on [0, 7) is given by normalized Lebesgue measure

on [0, 7). Therefore, by the uniform ergodic theorem ([22]),

1 T
wl,n(e,T)ﬁ;fO h(t,8)dt = yi(6, T)
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as n — oo. This completes the proof. O]

Remark 2.1 In the case where T[T is not irrational the sequence of functions v, still has a limit. If m is the least
common multiple of T and 1, then the rotation R*(0) will have m|T elements that repeat themselves sequentially.
The limit is the mean of the functions h(R°(0), 8), h(R(0),0), ..., h(R"/T71(0), 8).

2.3.2 IDENTIFIABILITY OF THE PERIOD

In this section we address the identifiability issue. The following theorem establishes that the points (2.2) are the
only zeros of the limiting function y(0, T') defined by (2.8).

Theorem 2.2 (Zeros of the limiting criterion function)
Suppose Tt is irrational. Then all zeros of the function 6 — y(0,T), 0 € (0, T), are the points 6 such that either
0 is a multiple of 7, or T — 0 is a multiple of 7.

Proof: As mentioned already in Section 2.2.1, from the periodicity of A it is easy to see that the function 0 —
(0, T) has zeros in the points (2.2). In the remainder of the proof we show that there are no other zeros.
Let 8 € (0, T) be such that (6, T) = 0. Then

t+60 t+T
f A(s)ds = f A(s) ds (2.10)
t t+T-0
for all ¢ € [0, 7], and hence, by periodicity, for all ¢ > 0. If we successively take ¢t = 0, T - 0,2(T - 6), ... in (2.10),
we see that
ng d [MHH}A( )d 2.11)
; (s)ds= K(r6) s)ds .

for every k € N. Observe that (2.10) implies that we also have

t+T-6 t+T
f A(s)ds = / A(s)ds
t t+0

for all t > 0. Successively taking ¢ = 0, 6,20, ... gives

ds= [T 00 d 212
fo (s) S_/ke (s)ds (2.12)

for every k € N.
Now define the maps Ry, R, : [0, 7) — [0, 7) by putting Ry (¢) = t + (T — 6) mod 7 and R,(t) = t + 6 mod 7.
Then by periodicity, relations (2.11) and (2.12) imply that

] RE(0)+6 T-6 RE(0)+T-0
[ A(s)ds = [R A(s) ds, [ A(s)ds = fR A(s)ds
0 0

k(0) k(0)

for all k € N. Since T/ is irrational, either (T — 0)/7 or §/7 is irrational. Hence, by a well-known result from

ergodic theory [22], one of the orbits {R¥(0) : k € N} is dense in [0, 7). To complete the proof, we note that if
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foal(s) ds = ftHa A(s) ds

holds true for all ¢ in a set that is dense in [0, 7), then a is a multiple of the period. Indeed, the function
g(t) =, tHe A(s) ds is continuous which, together with the periodicity of A, implies that the relation [;* A(s) ds =
th“ A(s) ds is in fact satisfied for all ¢ > 0. We can differentiate both sides of this relation with respect to ¢ to
obtain that A(t + a) = A(¢) forall £ > 0. O

the relation

2.3.3 CONSISTENCY

Using Theorems 2.1 and 2.2 and the standard theory for M-estimators, it is now straightforward to derive consis-

tency of the estimator (2.4).

Theorem 2.3 (Consistency of the M-estimator)
Let the estimator ,(T) be defined by (2.4) with 7 € [a,b],0 < a < b < 2a, T € (b,2a) and T/t irrational, then

. P
T, — Tasn — oo.

Proof: In view of Theorem 2.2, we are in a position to apply Corollary 3.2.3 of [98]. The theorem follows. O

The technical condition that T/t should be irrational can be handled by randomizing the choice of parameter
T. Take T to be uniformly distributed on (b, 2a), independent of observed process (Ny, t € [0, n]), and denote
by A the event that T/ is irrational. Then the preceding theorem implies that P(|7, — 7| > ¢| T)14 — 0, almost

surely. Since P(A) = 1, by taking the expectation of this relation, we derive the following corollary.

Corollary 2.1 Let the estimator t,(T) be defined by (2.4) with T € [a,b],0< a <b < 2a, T € (b,2a) and let T
be uniformly distributed on (b, 2a), independent of observed process (Ny, t € [0,n]). Then 1, L rasn - oo,

In Section 2.2.3, we outlined a graphical procedure based on the random function F, defined by (2.7). The

following theorem describes the asymptotic behavior of this function.

Theorem 2.4 (Consistency of the step function)
Suppose that Tt is irrational and kT < T < (k +1)7 for k € N. Then

Fo(T) - kr
asn — oo.
Proof: Let k € N be such that k7 < T < (k +1)7. It follows from Theorem 2.2 that the function 6 — (6, T)

has finitely many zeros in the interval [§/2, T/2], the smallest one being T — k7. Now partition [§/2, T/2] into

finitely many intervals T; such that each interval contains exactly one zero of the function in its interior. Define
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auxiliary “estimators

Or= argI@I:iTrjl |‘I’n(9, T)|

Notice that 61 = min; éT,j and by Theorem 2.1 we obtain that supg.r, ¥,.(6,T) - y(6,T)| L 0asn - oo
Since by construction the nonnegative, continuous function y(-, T') has a unique zero in the interior of Tj, it
follows by Corollary 3.2.3 of [98] that for every j, 07, j converges in probability to the unique zeros of y(-, T') in
T;. But then the estimator 1 converges in probability to the smallest positive zero of y(-, T), which is T — k.
This implies that F,,(T) — k7 in probability. O

2.4 EXPERIMENTAL RESULTS

2.4.1 SIMULATION STUDY

To evaluate and compare the performance of our estimator, we run the same tests as in [4]. In that paper, the
authors generate inhomogeneous Poisson process trajectories for a collection of periodic intensity functions. A
number of test intensity functions is considered, varying shape, number of peaks, relative frequencies and relative
amplitudes of the harmonics which make up the test intensity function. We refer to [4] for the plots of the various
test intensity functions. The period is then estimated on the basis of generated trajectories and the percentage
of estimates that fall within a +10% range relative to the true value of the period 7 (chosen to be T = 50 by the
authors) is taken as a measurement of the accuracy of considered estimation procedures. Most of the experiments
have 1000 observations in approximately 20 cycles of length 50. Besides, the authors implement the sensitivity
analysis with respect to the number of observations per cycle and the number of cycles observed.

Table 2.4.1 below reports the accuracy measurements (the percentage of estimates that fall within a £10%
range relative to the true value of the period 7) for different test function and different estimators. The rows in the
table refer to different test functions and the columns to different estimators. Table 2.4.1 extends the table given
in [4]: we added the results for our estimator 7, defined by (2.4) as the last column in the table.

The first column corresponds to Vere-Jones’ parametric estimator from [99] based on periodogram. It is
a parametric estimator and its performance is not satisfactory if the true intensity function is not close to the
parametric family of functions considered in [99]. The next column summarizes the results for an M-estimator
Tn,max Which is based on a certain modification of the estimator 7, min given in [67], its definition can also be
found in [4]. This estimator clearly fails to perform well either when few periods are observed or when the
intensity function is not unimodal. This could be related to identifiability issues. Columns three and four contain
two “smoothed” versions of the estimator 7, m,y described in [4]. They perform slightly better than 7, max but
still unsatisfactory for a number of test functions, especially for harmonic functions with multiple peaks per cycle
(3b, 3¢, 3d), or with varying relative amplitude (4a), or with varying number of points per cycle (7b, 7c, 7d). [4]
omit the performance numbers for the estimator 7, mi, as, with the exception of test 7d, none of the estimates
were within 10% of the true period.

According to [4], the most robust estimator among the ones they studied (periodogram, 7, max, Tn,2, and 7, 3)
is 7p,,2. But even the estimator 7, ; did not produce satisfactory results for all test function simultaneously. One
heuristic explanation of this is that the criterion functions on which those estimators are based may have other

minima different from the multiples of the period.
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Intensity function Periodogram  Tymax Tn2 Tn3 n
la Cosine 100 100 100 100 98
1b Square 100 98 98 96 96
1c Sawtooth 100 100 100 100 100
2a 2 Steps 100 98 98 96 96
2b 3 Steps 100 90 100 94 88
2c 4 Steps 100 94 96 84 86
3a1Pk/Cycle 100 100 100 100 98
3b 2 Pk/Cycle 0 0 96 88 100
3c 3 Pk/Cycle 0 4 22 32 100
3d 4 Pk/Cycle 0 0 46 46 100
4a A1/ A, = exp(0.5) 0 4 22 32 100
4b A/ A, = exp(1.5) 0 50 96 98 100
4c Al/Az =exp(2.5) 0 44 100 100 100
S5amin A =0 100 100 100 100 100
5b min A = 0.5 100 100 100 100 98
5cmin A =0.75 90 92 98 88 78
6a 25 Pts/Cycle 0 6 20 24 100
6b 50 Pts/Cycle 0 4 22 32 100
6¢100 PtS/CyCle 0 30 64 68 100
7a 40 Cycles 0 38 78 78 100
7b 20 Cycles 0 4 22 32 100
7¢ 10 Cycles 0 8 12 20 100
7d 5 Cycles 0 8 8 10 100

Table 2.4.1: Accuracy (percentage within £10%) of estimator (7 = 50).

Our criterion function is more strict in the sense that the results of Section 2.3 guarantee that, under mild
conditions on the parameter T, the multiples of the period are essentially the only zeros of the criterion function.
For our estimator 7,, we took T to be a uniformly generated number in a small neighborhood of 65 for all test
intensity functions A and use the same performance criterion (the percentage of estimates that fall within a +10%
range relative to the true value of the period) as in the above mentioned paper for the sake of comparison.

The last column of Table 1 shows that our estimator performs well for all test intensity functions including
the problematic ones, 3b, 3¢, 3d, 4a, 7b, 7c and 7d. Whenever the estimator fails to outperform the competing
estimators, it does so by a small margin and always provides comparable results - in these cases (1b, 2a, 2b, 2c, 5b,
5¢) the intensities have a lot of self-similarity which would account for the fact that our estimator, which explores
discrepancies between non-congruent regions of the intensity function, drops in performance. These intensities

are, however, parametric and in cases close to being constant and therefore fall outside our setup anyway.

2.4.2 REAL DATA EXAMPLE

In this section we apply our methodology to a real data set. This data was obtained from the S.E.E. Center
(http://ie.technion.ac.il/Labs/Serveng/) of the Faculty of Industrial Engineering and Management, Technion in
Haifa, Israel. It consists of counts for calls arriving at a bank’s 24 hour a day call center in the United States of

America. Overall there are records of more than 43 million events between the 26th May 2001 and 26th of October
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2003. These events are recorded in 30 second intervals with an average of 32 calls per minute.

The main appeal of using this particular data is that it comes from a situation where one could argue that
the “true” period is in some sense known to be 24 hours and so it offers a rare opportunity to actually quantify if
our estimator comes close to the “true” value of the period or not; this is usually not possible unless the data is
simulated. Indeed, an extensive empirical study (cf. [18]) made on a similar data set for data collected within the
year of 1999 indicates that the intensity with which these calls are received has daily periodicity. For our data set
the plot of the “step function” F, given in Figure 2.4.1 confirms this finding.

For a more accurate estimate, we consider as given that 7 € [20,30] = [a,b]. We then take T € [b,2a] =
[30,40] as one and a half day or 36 hours. For these choices, Figure 2.4.2 presents the criterion function on
[6,16] = [T — b,min(T — a, T/2)].

The point at which the value of the criterion function is closest to zero is found to be 8 = 11.3667 hours,
resulting in an estimate 7 = T — 0 = 24.6333 hours or 24 hours and 38 minutes.

The estimator performs quite adequately even though for this real data some of our model assumptions can
be challenged. Indeed, by looking at the counts one can see that the call center receives a higher number of calls
during holidays. Also, due to technical difficulties, the call center was shut down for a few hours throughout
the time considered in our data set. Strictly speaking, these two facts violate the assumptions that the intensity
function is periodic and that the intensity function is bounded away from zero. Still, our method is in this case

robust enough to produce a reasonable estimate of the period.
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Figure 2.4.1: Step function F,(T) for the call center data. For each T, the smallest minimizer of y(-, T) on (0, T/2] is

6r =T - |T/t|r. We plot T versus T — 61, which is an approximation for the step function T ~ | T/7|7. This provides a

graphical tool for selecting a reasonable value for T The picture suggests considering values for T roughly between 30 and
40. For comparison, we add a grid of lines separated by 24 units, the presumed period.
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Figure 2.4.2: Criterion function ¥, (6, 36) for the call center data set. The function has a clear minimizer at 6 = 11.3667
which corresponds to an estimate 7 = 24.6333, or 24 hours and 38 minutes.









Bayesian Smoothing for

Inhomogeneous Poisson Processes

WE APPLY nonparametric Bayesian methods to study the problem of estimating the intensity function
of an inhomogeneous Poisson process. We show that a certain spline prior which we will discuss in depth in
the next chapter is computationally feasible and enjoys desirable theoretical optimality properties. We illustrate
its practical use by analysing the call centre count data from Chapter 2. Theoretically we derive a new general
theorem on contraction rates for posteriors in the setting of intensity function estimation. Practical choices that
have to be made in the construction of our concrete prior, such as choosing the priors on the number and the
locations of the spline knots, are based on these theoretical findings. We show that when properly constructed,
our prior yields a rate-optimal procedure that automatically adapts to the regularity of the unknown intensity

function.
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3.1 INTRODUCTION

In this chapter we focus on inhomogenous Poisson processes on the line with periodic intensity functions, which

are models for count data in settings with a natural periodicity.

Nonparametric Bayesian methods, which are used more and more in many different statistical settings, have
so far only been used on a limited scale to analyze such models. From the applied perspective they can be attractive
for making inference about intensity functions, for the same reasons as they are appealing in other situations.
Estimating the intensity essentially requires some sort of smoothing of the count data and a nonparametric
Bayesian approach can provide a natural way for achieving this. Using hierarchical priors we can automatically
achieve a data-driven selection of the degree of smoothing. Moreover, Bayesian methods provide a way to quantify
the uncertainty about the intensity using the spread of the posterior distribution. A typical implementation
provides a computational algorithm that can generate a large number of (approximate) draws from the posterior.

From this it is usually straightforward to construct numerical credible bands or sets.

The relatively small number of papers using nonparametric Bayesian methodology for intensity function
smoothing have explored various possible prior distributions on intensities. An early reference is [70], who
consider log-Gaussian priors. Other papers employing Gaussian process priors, combined with suitable link
functions, include [1] and [73]. Kernel mixtures priors are considered in [56]. See also the related paper [30], in

which count data is analysed using spline-based priors.

The cited papers show that nonparametric Bayesian inference for inhomogenous Poisson processes can give
satisfactory results in various applications. On the theoretical side however the existing literature provides no
performance guarantees in the form of consistency theorems or related results. It is by now well known that
nonparametric Bayes methods may suffer from inconsistency, even when seemingly reasonable priors are used
(e.g. [29]). The purpose of this chapter is therefore to present a Bayesian approach to nonparametric intensity
smoothing that is both computationally feasible and at the same time theoretically underpinned by results on
consistency and related issues like convergence rates and adaptation to smoothness. Such theoretical results
have in the last decade been obtained for various statistical settings, including density estimation, regression,
classification, drift estimation for diffusions, etc. (see e.g. [35] for an overview of some of these results). Until now,

intensity estimation for inhomogenous Poisson processes has remained largely unexplored.

As motivation and starting point for treating this problem, we consider the analysis of the call center count data
from Chapter 2. In the previous chapter we analysed this data and concluded that it presented daily periodicity.
The same type of data were analyzed by frequentist methods in the paper [18]. We revisit the problem using a
nonparametric Bayesian method employing a spline-based prior on the unknown intensity function. In addition
to a single estimator of the intensity, this method provides credible bounds indicating the degree of uncertainty.
In Section 3.3 we study theoretical properties of our procedure, namely consistency, posterior contraction rates
and adaptation to smoothness. The results show that we have set up our procedure in such a way that we obtain
consistent, rate-optimal estimation of the intensity and that the method adapts automatically to the unknown

smoothness of the intensity curve, up to the level of the order of the splines that are used.
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3.2 ANALyYsIS OfF CarLL CENTER DaTa

3.2.1 DATA AND STATISTICAL MODEL

The approach we propose and study is motivated by the wish to analyze the dataset consisting of counts of
telephone calls arriving at a certain call center already considered in Chapter 2. We consider the records for the
period from November 1, 2001 until December 31, 2001, covering a total of about 2.8 million incoming phone
calls. These events are recorded in 30 second intervals with an average of about 32 calls per minute. The raw data

are plotted in Figure 3.2.1.
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Figure 3.2.1: Number of incoming phone calls between November 1, 2001 and December 31, 2001.

We model the full count data as the realization of an inhomogenous Poisson process N with an intensity
function A that is periodic, the period being 24 hours; we have already seen in Chapter 2 that this is a reasonable
assumption. This Poisson assumption is also natural and is investigated in some detail in [18], who could not find
significant evidence to the contrary in a similar dataset (same kind of data, but over a different time period).

Let n be the number of days for which we have data (n = 61) and let 7 be the period (24 hours). Then the full
call arrival counting process is given by N = (N; : t € [0, nt]), where Ny is the number of calls arriving in the
time interval [0, ¢]. The Poisson assumption means that for every 0 < s < ¢, the number of arrivals Ny — N; is

independent of the history (N, : u < 's) up till time s and that it has a Poisson distribution with mean

/jl(u) du.

We will assume throughout that A is at least a continuous function. The periodicity assumption then means that

A is a 7-periodic function, i.e. A(t + 7) = A(¢) forall ¢ > 0. For i = 1,...,n we define the counting process
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NO = (NP : te[0,7]) by
Nt(l) = N(i-1)r+t = N(i-1)o> tef0,7],

i.e. N() counts the number of arrivals during day i. Note that by the independence of the increments of the
process N, the processes N(!) are independent inhomogenous Poisson processes which have the restriction of A
to [0, 7] as intensity function.

Our goal is to make inference about this function. Note that we do not observe the full process N. We only
observe it at discrete times, namely every 30 seconds. On average about 16 calls arrive in a 30 second time interval,
so we really only see aggregated counts. Let A be the time between observations (30 seconds) and let m = 7/A be
the number of counts per day that we have in our dataset (m = 2880 in our case). Then for every i =1,...,n and
j=1,...,m, the number of arrivals

Cij = N};) - N(‘]’.fl) N (1)

in the jth time interval on day i has a Poisson distribution with parameter

py fjA Ao d (3.2)
P = t)dt. 3.2
7 JGna

We denote the total available count data by C" = (C; jri=l.,nj=1..., m). It follows that the likelihood is
given by
/lgje_’lj

p(C") = ﬁ R (33)

i=1 j=1 Cij!

-

In the following section we describe the prior we place on the intensity function A.

3.2.2 PRIOR ON THE INTENSITY FUNCTION

There are different possible choices of priors for the function A. A number of earlier considered options were
already mentioned in the introduction (Gaussian processes, kernel mixtures, splines). Our objective is to propose
a procedure which is computationally manageable on the one hand and with theoretical performance guarantees
on the other. Still, there will conceivably be more than one sensible choice meeting these requirements. For
our numerical study, we restrict ourselves to the investigation of the spline-based prior which was studied in
Chapter 4.

This free-knot spline prior is similar to priors considered earlier in different contexts (see for instance [28,
30, 88], or, more recently [85] and the references therein). Such priors have proven to be numerically attractive
and capable of capturing abrupt changes in functions of interest. This last point is relevant for our particular
application, since we expect fluctuations during the day due to the varying activity of businesses over the day.
Recently, several theoretical results were derived for spline-based priors in various settings as well (e.g. [38], [39],
[25], [7]). We will show in the next section that the procedure that we construct and implement has several
desirable theoretical properties.

Background information on splines can be found, for example, in [24] or [81]. We briefly summarize the
notation and terminology. (For more detailed description see Chapter 4.) A function is called a spline of or-
der q € N, with respect to a certain partition of its support, if it is g — 2 times continuously differentiable

and when restricted to each interval in the partition, it coincides with a polynomial of degree at most g — 1.
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Now consider q > 2. For any j € N, such that j > qlet K; = {(ki,....kjq) € (0,7)779: 0 < kg < -+ <
kj_q < 1}. We will refer to a vector k € KC; as a sequence of inner knots. A vector k € K; induces the partition
{Tkos k1), [k1s k2)s - . > [kj—g» kj—gs1]} of [0, 7], with ko = 0 and kj_g41 = 7. Fork € K, we denote by S the linear
space of splines of order g on [0, 7] with simple knots k (see the definition of simple knots in, e.g., [81]). This space

has dimension j and admits a basis of B-splines {Bﬁ,p ey B]q{,j}. The construction of {Blil, ey B]Z’j} involves the
knots k_g41,..., k-1, ko ki ... s kjgs kj—gi15 kj—gr2s - - . » kj, with arbitrary extra knots k_g41 < - < k_y < kg =0
and 7 = kj_g41 < kj_g42 < - < kj. Usually one takes k_g41 = - = k1 = ko =0and 7 = kj 441 = - = kj, and we
adopt this choice as well. Fork € K; and 6 € R/ we denote by sy g the spline in ! that has coefficient vector 8
relative to the basis {Bf |,..., Bl’ij}, ie.,

j
sko(t) =2 60iBL (1), te[0,7].
i=1

To define the prior IT on A that we use here we first fix the order g > 2 of the splines that we use (cubic splines
are popular and correspond to the choice g = 4) and the minimum and maximum intensities 0 < M; < M. Then

a draw from the prior IT is constructed as follows:
1. (Number of B-splines): Draw ] > g from a shifted Poisson distribution with mean p.

2. (Location of the knots): Given J = j, construct a regular 1/ j2-spaced grid in (0, 7). Then uniformly at

random, choose j — g grid elements (without replacement) to form a sequence of inner knots k.

3. (B-spline coefficients): Also given ] = j, and independent of the previous step, draw a vector 0 of j inde-

pendent, uniform U[M;, M; ]-distributed B-spline coefficients.

4. (Random spline): Finally, construct the random spline sy g of order g corresponding to the inner knots k

and with B-spline coeflicient vector 0.

The specific choices made in the construction of the prior, like the Poisson distribution on J, choosing the
knots uniformly at random from a grid, etc., are motivated by the optimality theory that we derive in Section 3.3.
The theory shows that there is some more flexibility, but for choices too far from the ones proposed above
the performance guarantees brake down. Technically the prior on A is the measure II on the space C[0, 7] of
continuous functions on [0, 7] given by the law, or distribution of the random spline sy g described above. The
splines in ! are q — 2 times continuously differentiable, hence in this sense the choice of q determines the
regularity of the prior. We will see in the next section that it also determines the maximal degree of smoothness
of the true underlying intensity to which our procedure can adapt. In applications like the one we are interested
in here, a sensible choice of the parameters M; and M, will typically be suggested by the average number of
counts per time unit in the data. In Section 3.3 we present other possibilities, such as putting a prior on these
parameters as well, in order to let their value be determined by the data automatically. This is possible, but will
come at an additional computational cost. The construction of the grid in step 2. is non-standard compared to
other spline-based priors proposed in the literature. It is motivated by our results from Chapter 4 and will allow

us to derive desirable theoretical properties in the next section.
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3.2.3 POSTERIOR INFERENCE

For the data described in Section 3.2.1, with likelihood (3.3), and the spline prior IT described in Section 3.2.2,
we implemented an MCMC procedure to sample from the corresponding posterior distribution of the intensity
function A of interest. The sampler we propose here is similar to the one seen in Chapter 4. The minimal and
maximal intensity parameters M; and M, were set to 200 and 20000, respectively; these values were motivated
by the range of the data (time is measured in hours). We took the order g of the splines equal to 4.

Since our prior is quite similar to the ones used previously in for instance [30] or [85] in regression or hazard
rate estimation settings, our computational algorithm is a rather straightforward adaptation of existing methods.
A generic state of the chain is a (2] — q + 1)-dimensional vector (j,k, @) where j € N, j > g is the model index,
k =k; € (0, 7)/74 is a vector of inner knots and 6 = 0;¢ R/ is a vector of B-spline coordinates. Together, these
index a spline sy g = szj’oj € Sl‘zj. We will abbreviate the corresponding posterior density by 71( jk, 0| C"). Since
the splines involved are easy to evaluate and integrate we can compute the likelihood, and then the posterior, up
to the normalization constant, efficiently and without any approximations being needed.

We consider four different types of moves for the MCMC chain, namely: a) perturbing the coefficients 6, b)
moving the location of one knot in k, ¢) birth of a new knot and d) death of an existing knot. Each of these moves
is proposed, independently and respectively, with probabilities p,, pp, pc(j) and py(j) where for each j > g,
Pa+ Py +pc(j)+ pa(j) = L In fact, we start by picking 0 < p, + p, < 1 as parameters of the algorithm; if y is the
mean of the prior on J, then we take p.(q) = 1- p, - pp, pa(q) = 0and, for j > g, p. j = (1-pa —pp)2” U/ (b=a)
and pg ;= (1-pa - pp)(1-27G-D/(#=9)) This choice results in Pej=Pajifj=p pej> pajif j < pej<pa;
if j<p.

When perturbing the coefficients we perform simple (Gaussian) random walk MCMC steps; the standard
deviation of the random walk was chosen such that we obtained an acceptance rate of roughly 23% for this type of
move, as prescribed in [34]. Let ¢ ; be the joint density of ji.i.d. standard normal random variables. Our proposals
correspond to a move (j, k, 0) - (j, k, 9), 9 = 0 + ou, which we accept with probability min (A((j, k,0) -
(j-k,9)),1), with

n(j,k, 0+ ou| C") pag;(-ou) ~ n(j.k,9|C")

A((jk.0) > (j.k. 9)) = n(j,k, 0| C") pagj(on)  n(jk0]C")’

Moving a knot is also straightforward; one of the current j — g knots, say k;, is picked uniformly at random
among those in k and we propose to change its location depending on how many of its neighboring position
on the j~2-spaced grid are free — we say that two knots k, k' are neighbors if |k — k’| < j~2. This means that we
propose a move ( j>k, 0) - ( jr %, 0) where k and « differ only at the i-th position: if k; has two free neighboring
positions, then it moves to either of them with equal probability ¢; = ¢;(k;_1, ki, ki1) = 1/2; if k; only has one free
neighboring position, then, with equal probability ¢; = 1/2, it either moves to this free position or it does not move
atall; if k; has no free neighboring positions then it does not move, with probability ¢; = 1. These particular choices
assure the reversibility of the moves. We accept such a proposal with probability min (A( (j,k,0) > (j,x, 0)), 1)

for
(s (ki skl ki), 01 C") py (- q) e m(j%, 0] C")

(v Ckts e s kv kjeg), 01 C") py (G~ q) e n(jik, 8] Cm)’

Birth moves and death moves, where a new knot is respectively added and removed, are reverse moves of one

A((.0) > (j.x.0)) ==
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another and so we will outline only how to perform the birth move. We propose a move ( 7, K, 0) - ( j+1x, 9)
where we add a new knot to the vector k and a new coeflicient to the vector 8. In doing so, a new B-spline is
introduced to the B-spline basis and a new B-spline coefficient is generated. The new knot vector x contains all
knots from k rounded to the closest grid point on a (j+1) 2 spaced grid with the extra knot then picked uniformly
at random among the remaining free positions; call it k;_; < k’ < k;. Note that this construction does not prevent
two knots in x from occupying the same position; such knot vectors have posterior probability 0, though, so that
the probability of moving to such a state is zero. The coefficients on this basis are then picked as 9 = f(0,u) =
(01,...,0m-1,14, 0, ..., 0;) where f is linear and invertible, and u is a random seed, a normally distributed
random number with mean 7(8), to be picked later, and variance 1. The new knot will belong to the support of ¢
B-splines, namely the i-th through (i + ¢ —1)-th B-splines and we pick the index m in {i, ..., i+ q} depending on
the knot’s position within the interval [k;_;, k;]; namely m = i + [ (g + 1) (k” — ki_1)/ (ki — ki—1) |. The mean of the
random seed u will be picked as a weighted mean of the coefficients 6, namely, 7(0) = ?:‘fl w;0; + Z{: mWi-10i,

where the weights w; are normalized and
! k
wi o [ B (1)BY(t)dt, i=1,...,j+1L
0

With probability min (A((j,k,ﬂ) - (j+1,%, 9)),1) we make the move (j,k, 0) - (j+1, x,9),with 9 = £(0,u)
and & = (ky, ..., ki-1, k', ki, ..., kj_q), where

2(j+1L6,9]C")paju(j-q+1)"
7(js k0 C") pe (2= j+aq) " pr(u)

A((jk0) > (j+1.5,9)) = 7l

where |J | is the Jacobian of the linear mapping described before.
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Figure 3.2.2: Top panel: posterior distribution of the intensity function A based on the thinned data. (Blue: posterior mean,
red: point-wise 95% credible intervals). Lower panel: posterior distribution of the knot locations (Histogram).

Figure 3.2.2 summarizes the outcome of the analysis. In the top panel it shows the posterior and 95% point-
wise credible intervals, based on 10,000 draws from posterior. The lower panel shows a histogram for the locations

of the knots corresponding to the samples from the chain used to generate the top panel. Note that as expected,
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relatively many knots are placed in periods in which there are relatively many fluctuations in the intensity.

Due to the large event rate (almost 3 million counts in total), the credible bands are very narrow. To illustrate
the dependence on the amount of data we ran the analysis again with a thinned dataset. We thinned the data
by randomly removing counts, retaining about 1, 000 counts. The same analysis then leads to the posterior plot

given in Figure 3.2.3. In this case, the uncertainty in the posterior distribution becomes clearly visible.
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Figure 3.2.3: Top panel: posterior distribution of the intensity function A based on the data. (Blue: posterior mean, red:
point-wise 95% credible intervals). Lower panel: posterior distribution of the knot locations (Histogram).

We find that the prior that we defined in Section 3.2.2 is a computationally feasible choice for nonparametric
Bayesian intensity smoothing in the context of this kind of periodic count data. In the next section we analyze its

fundamental theoretical performance. See in particular Theorem 3.5 in Section 3.3.2.

3.3 THEORETICAL RESULTS

3.3.1 CONTRACTION RATES FOR GENERAL PRIORS

We derive our theoretical results for the particular prior that we used in the Section 3.2 from general rate of
contraction results that we present in this section. These are in the spirit of the general theorems about conver-
gence rates of nonparametric Bayes procedures that were first developed for density estimation ([38]) and later
for various other statistical settings, see for instance [94], [36], [74]. Here we complement this literature with
general rate results regarding intensity estimation for inhomogenous Poisson processes. These results are not
only applicable to the spline priors we consider in this chapter, but may also be used to analyze contraction rates
of other priors. Moreover, we formulate the theorems not just for the case that we have discrete observations of
aggregated data, as in our data example, but also for the case that the full counting process is observed.

The setting is as in Section 3.2.1. We fix a period 7 > 0. In the full observations case we assume that for
n € N, we observe an inhomogeneous Poisson process N” = (N} : t € [0, n7]) up to time n7, with a 7-periodic
intensity function A. Equivalently, we can say that we observe n independent inhomogeneous Poisson processes

NO, ..., N™ indexed by [0, 7], and with a common intensity function A, which is a positive, integrable function
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on [0, 7]. It is well known that the law of N under the intensity function A is equivalent to the law of a standard

Poisson process and that the corresponding likelihood is given by

pA(N") = e STA(D)-1) di+ [ og (A(1) ) AN}

(see for instance [50]). We consider prior distributions that charge strictly positive, continuous functions. Given
such a prior IT, on A (which we allow to depend on 1) we can then compute the corresponding posterior distri-
bution IT,(- | N") by Bayes’ formula

Jp PA(N") I, (dA)
J pA(N") T (dA)

M,(AeB|N") =

Formally we can view the prior I1,, as a measure on the space A c¢ C[0, 7] of all continuous, strictly positive
functions on [0, 7], endowed with its Borel o-field. If we endow A with the uniform norm, then the likelihood is

a continuous function on A. Hence, the posterior is a well-defined measure on A.

The following theorem considers the frequentist setting in which the data are assumed to be generated by an
unknown, “true” intensity function Ay. It gives conditions on the prior II,, under which the posterior IT,(- | N")
contracts around the true A¢ at a certain rate as the number of observed periods tends to infinity. The assumptions
and conclusions of the theorem are formulated in terms of various distances on the intensity functions. For a

continuous function f on [0, 7] we define the norms || f||, and | f ||« as usual by

= [ 20de 1= sup £

te[0,7

For a set of positive continuous functions F we write F* for its complement and /F = {\/7 :feF}.Fore>0

andanorm | - || on F,let N(¢, F, || - |) be the minimal number of balls of || - |-radius ¢ needed to cover F.

Theorem 3.1 (Contraction rate for full observations)

Assume that My is bounded away from 0. Suppose that for positive sequences &, £, — 0 such that n(&, A&, )* —» oo
as n — oo, and constants ¢y, c; > 0 it holds that for all c3 > 1, there exist subsets A, ¢ A and a constant c4 > 0 such
that

Hn(/\ : ”A - AOHoo < én) 2 Cle_czné%', (3~4)
I, (AS) < e ", (3.5)
10g N (&py VAps | - |2) < cané?. (3.6)

Then for e, = &, v &, and all sufficiently large M > 0,
E) T, (A € Az [VA=VA[y > Me, | N") -0 (3.7)

as n — oo.
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The proof of this theorem is given in Section 3.4.1. The assumptions of the theorem parallel those of similar
theorems obtained earlier for other settings including density estimation, regression, and classification. The first
condition (3.4), the so-called prior mass condition, requires that the prior puts sufficient mass near the truth.
Conditions (3.5)-(3.6) together require that most of the prior mass, quantified in the sense of the remaining mass
condition (3.5), is concentrated on sieves A, which are “small” in the sense of metric entropy, quantified by the

entropy condition (3.6).

The proof of the theorem shows that conditions (3.5)-(3.6) can in fact be slightly weakened, at the cost of
using more complicated distance measures on the intensities. The conditions in the theorem are easier to work
with when studying concrete priors and are expected to give sharp results in many cases. We note that if under
the prior all intensities are bounded away from 0, then the set \/A,, in (3.6) may be replaced by A,,. Moreover, if
all intensities are uniformly bounded by a common constant under the prior, then the square-root norm ||\/+|>
in (3.7) may be replaced by the L>-norm | - |, itself. In the next section we verify the conditions of the theorem

for the spline priors used in Section 3.2.1.

In the discrete observations case we only observe, for some m € N and A = 7/m, aggregated counts C;; for
i=1,...,nand j =1,...,m, given by (3.1). As before, we summarize these data using the notation C" = (C;; :
i=1,...,n,j=1,...,m). As explained in Section 3.2.1 the likelihood is in that case given by (3.3), where the A;’s

are defined as in (3.2). Consequently, the discrete-observations posterior is given by

_ Jspa(C) T (dD)
[ pA(C) T ()

In this case it is clear that we can not consistently identify the whole intensity function A from the data, but only

IM,(AeB|C")

the integrals Ay, ..., A, In the following theorem, which deals with the convergence of the posterior distribution
in the case of discrete observations, we therefore measure the convergence using a semi-metric that identifies
intensity functions with the same integrals over time intervals in which we make observations. For A, 1" € A, we

define the semi-metric p by setting

P -5V -5

j=1

jA 1/2 s, 1/2\?
[ /(‘jfl)A M) dt] B [f(jfl)A Yo dt] ) .

The theorem has exactly the same assumptions on the prior as Theorem 3.1 above, but gives a contraction rate

relative to the distance p. The proof of the theorem is given in Section 3.4.2.

Theorem 3.2 (Contraction rate for discrete observations)

Assume that Ay is bounded away from 0. Suppose that for positive sequences &, €, — 0 such that n(&, A &,)* — oo
as n — oo, and constants cy, c; > 0 it holds that for all c3 > 1, there exist subsets A, ¢ A and a constant c4 > 0 such
that (3.4)-(3.6) hold. Then for e, = &, v &, and all sufficiently large M > 0,

EpII,(Ae A:p(A,Ag) > Me, | C") -0

as n — oo.
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The requirement that IT,, must charge only positive functions ensures that such a prior may be seen as a
measure on A, the space where the “true” intensity A lives. This can be easily enforced in our spline prior by
endowing the coeflicients of the B-splines with priors that put mass only on the positive reals. It is often the case
though, that priors on non-parametric spaces are taken as the law of a stochastic process. If we would like to use a
process whose trajectories are not necessarily positive, then we can apply to the process a so-called link function
to map their range. We can then extend the previous results to general stochastic process priors defined as the law
of ¥ (W) for some strictly increasing link function ¥ : R — (0, o) and a stochastic process W = (W; : t € [0, 7]).
Let W, be a stochastic process with square integrable sample paths. In the literature there are various results for
stochastic process priors that assert or imply that under certain conditions, for sequences &,, &, — 0 such that
n(é, A &,) — oo, constants ¢, c; > 0 and wy € L2[0, 7], it holds that for every c; > 1 there exist measurable sets

B, c L?[0, 7] and a constant ¢4 > 0 such that

P(H Wy, - WOHOO <Ey)2 Cle_cznéﬁ> (3.8)
P(W, ¢ B,) < e—cméﬁ) (3.9)
log N (&, By || - |2) < canéZ. (3.10)

The following theorem, whose proof can be found in Section 3.4.3, is formulated in such a way that it directly
links Theorems 3.1 and 3.2 above to these existing results, so that we can easily obtain rate of contraction results

for many concrete priors.

Theorem 3.3 (Contraction rates for stochastic process priors)

Let the prior I1,, be the law of ¥ (W,), for ¥ : R — (0, 00) an increasing, differentiable function such that both ¥
and the derivative of log ¥ are bounded, and W, = (W, (¢) : t € [0, 7]) is a stochastic process with square integrable
sample paths. Suppose that for sequences &,, &, — 0 such that n(&, A £,)* — oo and constants ¢y, c; > 0 it holds
that for every c3 > 1, there exist sets B, ¢ L*[0, 7] and a constant ¢4 > 0 such that, for wy € L?[0, 7] such that
Ao = ¥ (wy), conditions (3.8) - (3.10) hold. Then for e, = &, v &, and all sufficiently large M > 0, the conclusions of

Theorems 3.1 and 3.2 remain valid.

The theorem assumes implicitly that ¥ is bounded and that g = ¥(wy) for some (necessarily unique)
function wy. Clearly, we must then have |Ay| oo < ||¥]|co- Since Ag is unknown, the only way to ensure that this
holds in practice is to assume a known uniform bound M on the unknown intensity function and then choose a
link function ¥ such that |¥| . > M.

Since such an assumption may be undesirable in certain cases, it is of interest to devise ways to avoid it. One
possibility is to use a rescaling factor for a fixed link function, and endowing this factor with an additional prior.
Theorem 3.4 shows that as long as the tails of the prior on the scaling factor are appropriately thin, there is no

loss in terms of rate.

Theorem 3.4 (Contraction rates for rescaled stochastic process priors)
Let the prior I1,, be the law of M + AY(W,,), for ¥ : R — (0,1) an increasing, differentiable function such that
both ¥ and the derivative of log ¥ are bounded, a constant M > 0 such that Ay > M, W, = (W, (t) : t € [0,7]) a
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stochastic process with square integrable sample paths, and A an independent (0, oo)-valued random variable with
a positive, continuous Lebesgue density.

Suppose that for sequences &,, &, — 0 such that n(é, A &,)* 2 logn and constants c;, c; > 0 it holds that for
every c3 > 1 there exist sets B, c L*[0, 7] and a constant ¢4 > 0 such that, with wy € L*[0,7] and ¢ > 1 such
that g = M + c| Ao — M||oo ¥ (wy), conditions (3.15) - (3.17) are satisfied and in addition there exists a polynomial
sequence a,(c3) such that

P(A > ay(cs)) < e =",
Then there exists a constant C > 1 such that for e, = &€, v &, and for all sufficiently large M > 0,
E)II(A: A= Aol2 > Me, | N") -0

and
E,\OH()L : p(A,AQ) > Me, | Cn) -0

as n — oo.

The proof of the theorem is given in Section 3.4.4.
We have introduced constants ¢; > 1 and M in the assumptions of the theorem. This is to have some more
flexibility when checking the conditions of the theorem for specific priors and underlying true intensity function

Ao. For ¢! the inverse of the link function, we have

Wo =

af A-M
(C\llo - Mo )

Hence, if we assume for instance that the truth has Hélder regularity of order, «, say, then this caries over to wy
as soon as the restriction of W to [ (inf Ag — M) /(c||Ao — M| w0 ),1/c] has sufficiently many bounded derivatives.
Since the derivative of W™ typically blows up at 0 and 1, we have to assume that A is bounded away from M
in such a case and take c strictly larger than 1. As mentioned before, assuming a lower bound on the intensity
function is not restrictive. It also allows us to claim that, by construction, the functions in the support of the prior
are uniformly bounded from zero.

In the next section we apply the theoretical results derived above to our spline prior.

3.3.2 CONTRACTION RATES FOR OUR SPLINE PRIOR

Having the general rate of contraction results given by Theorems 3.1 and 3.2 at our disposal, we can use them
to study the performance of the spline-based priors outlined in Chapter 4 and in particular, the one defined in
Section 3.2.2, in the context of estimating Poisson intensities. We fix the order g > 2 of the splines that are used.
As before, let N" be the a full path up till time n7 of an inhomogenous Poisson process N with 7-period intensity
Ao and let C" be the discrete-time counts C" = (C;j:i=1,...,n,j=1,...,m), with C;; asin (3.1).

The contraction rate of the posterior will depend on the regularity of the true intensity function, measured in

Holder sense. For a > 0, let H,4([0, 7]) be the space of functions on [0, 7] with Holder smoothness a. (For | « |
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the greatest integer strictly smaller than «, having f € 7, ([0, 7]) means that f has | «| derivatives and that the

highest derivative f (l*]) js Holder-continuous of order o — la].)

Theorem 3.5 (Contraction rate for the spline prior)
Assume the true intensity function Ay belongs to Hq ([0, 7]) for some a € (0, q], and M < Ay < M,. Consider the
prior I1 constructed in Section 3.2.2. For all p > 1 and all sufficiently large M > 0,

Ep, (A€ A A= Aol zM(lOg’;n)]fza IN") =0
and .

IE,\OHn(/\eA:p()L,)LO) 2M(longn) T2 |Cn) 50
asn — oo,

Note that up to a logarithmic factor, the rate of contraction in the theorem is the optimal rate n~%/(1+2%) for
estimating an a-regular function. Moreover, the prior does not depend on «. Hence the procedure automatically
adapts to the smoothness of the intensity function, up to the order of the splines that are used. This theorem deals
with the case that we have known bounds M; and M, for the intensity. If no upper bound is know then we can
take ¥ as an identity and use Theorem 3.4. The existence lower bound M; > 0 is not restrictive since it can be
enforced by adding a homogeneous Poisson process with known intensity to the data.

In Section 3.3.3 we present one last result. Instead of imposing smoothness conditions on the true intensity
Ao we can also consider shape restrictions. This is a common practice in reliability analysis. Spline based priors
can be used for this purpose since an increasing vector of B-spline coeflicients results in an increasing spline

function (cf. [81]) but we consider, in the next section, priors based directly on the Dirichlet process.

3.3.3 CONTRACTION RATES FOR MONOTONOUS INTENSITIES

We assume in this subsection that Ay is a non-decreasing, continuous function. Decreasing intensities, which
arise for instance in certain applications in Poisson regression and reliability, can be handled analogously.
We employ a prior based on the Dirichlet process [33]. In other statistical settings it is known that when

properly constructed, Dirichlet-based priors can yield posterior convergence at the rate n~"/>

(up to alogarithmic
factor) when the truth is monotone. See for instance Section 6 of [38] for an example in the context of a current
status model or [94] for the estimation of a monotone drift function in a diffusion model. We are not aware of
a lower bound on the rate for our model in the literature. We expect though that #n™'/? is (eventually up to a log
factor) the optimal rate.

The proof of the following result can be found in Section 3.4.6.

Theorem 3.6 (Contraction rate for Dirichlet prior)
Let the prior II be the law of the process A + BD where D is a Dirichlet process on [0,1] with base measure which

has a positive, continuous Lebesgue density on [0, 7] and A and B are independent, positive random variables with
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positive and continuous densities, which are independent of D. Moreover, we assume that for x > 0 large enough,

x/3

P(A>x*) < P(B>x*) s e (3.11)

for some constant ¢ > 0. Let Ay be a non-decreasing, continuous function such that 1o(0) > 0 and Ao(7) < oo.
Then, for all sufficiently large M > 0,

By, (A e Az h(d,do) > M(lo’g"n)—l/3 X") >0

as n — oo, for X" either N" or C".

We remark that if the tails of the variables A and B in the definition of the prior are heavier than the ones in
the condition of the theorem then we might still get a rate, but it will typically be sub-optimal. Indeed, inspection
of the proof of this result we can simply define the radius L, of the range of the functions in the sieve A, as the

smallest number such that
P(A>L,)se™ 8" P(B>L,)ge ™ s, (3.12)

The prior and remaining mass conditions are still fulfilled with &, ~ (1/logn)~"/? and the entropy condition with
&n ~ (n/\/L,) 3. So as long as L, << n* we still obtain a rate, but it will be slower than (n/logn)~/? if (3.11)
does not hold. If the tails of A and B are only sub-exponential, for instance, then (3.12) holds for L,, ~ n'/?logn

-5/18, up to a logarithmic factor. For power-law tails we do not obtain a rate at all.

and we only get the rate n

If in addition to the monotonicity, an a-priori upper bound L on A is assumed, then A and B can simply
be taken uniform on [0, L], for instance. We then obtain a rate (1/logn)~/? relative to the L>-norm on the
intensities for the posteriors IT(- | N") and relative to the semi-metric p for IT(- | C"). Known lower bounds M
on Ay can also be incorporated into the prior by taking IT as the law of the process M + A + BD with A + BD as

in Theorem 3.4.

3.4 PROOFS

3.4.1 ProoF oF THEOREM 3.1

A useful observation is that we can view the statistical problem to which the theorem applies as a density estimation
problem for functional data. Indeed, in the full observations case we observe a sample N, ..., N("), which are
independent, identically distributed random elements in the Skorohod space D[0, 7] of cadlag (right-continuous
functions with left-hand limits) on [0, 7] (see [50], Chapter VI). Under the intensity function A, the density p;

of NO relative to the law of a standard Poisson process indexed by [0, 7] is given by

P/\(N) _ e—for(l(t)—l) dt+ [ log(A(t)) dN;

(e.g. [50], Chapter III). Hence, the density estimation results of [38], [37] apply in our case.
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We want to apply Theorem 2.1 of [37]. This gives conditions for posterior contraction rates in terms of the

Hellinger distance on densities and other, related, distance measures. The Hellinger distance h(p,, p)/) is in

our case given by h*(py, py) = 2(1 = Ey\/pa(N)/pa(N)), where E, is the expectation corresponding to the
probability measure P) under which the process N is a Poisson process with intensity function A. The other

relevant distance measures are the Kullback-Leibler divergence K(p,, pi-) = —Ej-log(pa(N)/pas(N)) between
p» and pjs and the related variance measure V(py, pyr) = Vi log(pr(N)/py(N)). For a Poisson process N
with intensity A and a bounded, measurable function f,

E/()Tf(t)dN,:/OTf(t)/l(t) dt,

v [Tfnan= [T RO
0 0
Eelo F0)dN: _ = [ (mexp(f(0))A(r) dt.

Using these relations it is straightforward to verify that we have

hZ(PAaP)u) =2(1- e_% Iy (W—m) dt))

K(propw) = [ O =20 de+ [N (0)log AA((:)) dt,
V(pa py) = for)t'(t) log? AM(:)) dt,

respectively.

The following lemma relates these statistical distances between densities to certain distances between intensity

functions. We denote the minimum and maximum of two numbers a and b by a A b and a v b, respectively.

Lemma 3.1

We have the inequalities

IVA = VFla 1) < h(pa s pr) < VA(IVA =V 21),

K(py»p) <3IVA =V 3+ V(pypar),

VI =V ¢ [0 v (0) log? 3308 .

1
an

Proof: The inequalities for & follow from the fact that (1/4)(x A1) <1—exp(-x/2) < x Alforx > 0.

For the Kullback-Leibler divergence we have

K(ppr) = [ V(0 0/ () de,

for f(x) = x —1-log x. By Taylor’s formula, |f (x)| is bounded by a constant times (1/x - 1)? in a neighborhood
of 1. Since | f(x)| is bounded by |x| for x > 1and |x|/(y/x —1)? = las x — oo, we have in fact |f(x)| < 3(v/x -1)?
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for all x € (1/e, 00), say. For (0,1/e) we have | f(x)| < |log x|. It follows that

K(prpr) <3 (VA0 —\/)L’(t))zdt+/):

AA>1]e JA<1/e

M) |a.

A'(t)|log 0]

The first term on the right is bounded by 3]\/A — v/A’||3. For the second term we note that for A/A’ < 1/e, we have
log|A/A'| > 1and hence log|1/A'| < log® |A/A'|. The statement of the lemma follows.

To prove the last inequality, write | /A —+/A’||3 as the sum of an integral over the set {A’ < A} and an integral
over the set {A’ > 1} and use the fact that 1 — x < |log x| for x € (0,1]. O

To connect assumptions (3.4)-(3.6) to the corresponding assumptions of Theorem 2.1 of [37] we first note
that since A is bounded away from 0 and infinity by assumption, the same holds for any A € A that is uniformly
close enough to Ag. Lemma 3.1 and the definition of V therefore imply that for A uniformly close enough to A,
both K(py, p,) and V(py, py,) are bounded by a constant times the uniform norm |A — Ag| . It follows that
for n large enough, the Kullback-Leibler-type ball

B(en) = {A e A:K(pp, pay) < &rn V(PrsP2,) < &} (3.13)

is larger than a multiple of the uniform ball {1 € A : [A - A¢| o < &, }. Lemma 3.1 also implies that the covering
number N(&,, {py : A € A,}, h) is bounded by N(&,/v/2, VA, | - |2). Hence, assumptions (3.4)-(3.6) imply
that the conditions of Theorem 2.1 of [37] are fulfilled. This theorem states that for M large enough, E) IT,,(A :
h(py,pa,) > Me,) — 0. To complete the proof, note that by the fact that Me, <1 for n large enough and the first
inequality of the lemma, it holds, for # large enough, that | v/ —=\/A¢ | > \/2Me, implies that h(p, Pr) = Mey,.

3.4.2 PROOF OF THEOREM 3.2

The proof is similar to the proof of Theorem 3.1, but this time we start from the observation that in the discrete-
observations case, the data constitute a sample of n independent, identically distributed random vectors C M, .., cm
in R™, where
C = (Cits..., Cim)
and Cj; is given by (3.1). The coordinates C;; of C( are independent Poisson variables with mean A j given by
(3.2).
Again we apply Theorem 2.1 of [37]. In this case the Hellinger distance h,,, Kullback-Leibler divergence Ky,

and variance measure V,, are easily seen to be given by

2
2 =201 - P EVEVE) )
V,
Kn(L,A") = (A= 17) + > Aflog )Tf
j
!

A
Vi (L, A') = 3 A log? )Tf
i

respectively. These quantities satisfy the same bounds as in Lemma 3.1, but with the integrals replaced by the
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corresponding sums. Moreover, by expanding the square and using Cauchy-Schwarz we see that

S (VA - y) < IVE -V,

and hence also

A oo 2
V(LX) <43, Aj ,V (\/7 \/7) 1nft|/\(t)|| /\Hlnfz V(1) ”\/A__ VA

Using these relations the proof can be completed exactly as in Section 3.4.1.

3.4.3 PRrROOF OF THEOREM 3.3

Let Ao = ¥(wy) for some function wg € L*[0, 7] and A = ¥(w) for w in the support of the process W. Note that
foralla,b e R,

llog ¥(a) ~log'?(b)| = | [ \‘I”,((tt di] < H"’H la - bl.

Combining this with the bounds provided by Lemma 3.1, we conclude

WA = VIl < LW Lee [ ] 1w - woll:

Using this we can connect (3.8)-(3.10) to the corresponding assumptions of Theorem 2.1 of [37] in the same way

as we did for the previous two theorems and the result follows.

3.4.4 PROOF OF THEOREM 3.4

Take A = M + A¥(w) for w in the support of the process W, and g = M + ¢||1g — M||oo ¥ (W) for some constant
¢ and function wy with M such that Aq > M. We consider first the case of continuous observations. First note
that

VA=l < IV =M+ ¢[Ag = Mo ¥ (W) 2 + |[V/M + c[ Ao — Moo ¥ (w) ~ /Ao 2.

We have forall a, b,u >0,

b u u
\/M+au—\/M+lm:/ dt < a-bl,
| | a 2v/M + tu 2\/M| |

from which it follows that

VA= VM + 2o - M[o¥(w)]2 <

T
\IIOOA—CA - M|
Wirik |4 clAo - M| oo

Also, foru>0and a,b e R,

M+ u¥(a) - /M +u¥(b)| = /ub 2“% dt < @Hl\ua b,

M +u¥(t) 2
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implying

Ao — Moo
A+ o~ MIa¥n) VIl « VUM )y,

We also have

T Ao(t
V(pao o) < (M + cldg M) ¥ [ Tlog 200 1
0 A1)
Proceeding in the same way as before, for a, b, u > 0,
W<M+w%%WM+wn—fb gt Lia-ul
# & “Ja M+tu M >

andforu >0,a,beR,

llog(M + u¥(a)) - log(M + u¥(b))| = ab A%dt < H%Hmm - b],

which give, respectively,

2

T 2
[ 1o Mo at < T RLJA - Ao - M.
0 M+ Ao — M|o¥(w(t)) M

>

and

T Ao (1) v 2
log’ 0 A — wol2.
fo og M+c\|)to—M||°o\If(w(t))dt§H‘I’”ooHW woll3

We conclude that for d either h%, K or V,
2 2 2
d(A,do) < C*(|A = c|ho = Mlloo| + | = wo3),

for a constant C depending on M, 7, the range of 1y and on the link function V. The same computations can be
carried out in the case of discrete observations and the statement of the previous display will hold for another

constant C depending on the same quantities.

We verify now the conditions of Theorem 2.1 of [37]. Let ¢ > 0 and recall that B(¢) is defined as (3.13). By
construction it holds that IT,(B(¢)) is bounded from below by

P(K(A,A0) <%, V(X A) <&, A>a)

for A = M+ A¥Y(W,), Ao = M +c| Ao — M||eo ¥ (wo) and every a > 0. The bound derived above implies that there
exists a constant C > 0 such that for a = ¢| Ay — M| e, this is further bounded from below by

]P’(|A— cAo = Moof® + | Wy — wo 3 < C*e*, A > c| 1o — M| o).
By the triangle inequality and independence this is lower bounded by
P(|A - c|Ao = M| oo| € Ce, A2 c||dg = Moo )P(|| Wy — wo |2 < Cé).

The first factor in the display is bounded from below by a constant times ¢ and the last one is lower bounded
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by assumption. Hence, by the prior mass assumption of the theorem, we have that the prior mass condition is

fulfilled for certain constants ci, c; > 0 as in the statement of the theorem.

To verify condition remaining mass condition is suffices to show that for some given constant c3 > 1, there
exist sets A, such that IT,, (AS) < 2exp(—c3né2). By the assumptions, there exists a set B, such that P(W, ¢
B,) < exp(-c3né%) and a sequence a, = a,(c3) — oo such that P(A > a,) < exp(—c3né2) as well. Then for the

sieves A, = {a¥(w) : a < a,,w € B, } we have
IL,(AS) <P(A> ay) + P(W, ¢ B,) < 2",

as required.

By the bound on the Hellinger distance derived above and the entropy assumption of the theorem we have,

for a constant L > 0,

log N(LEy, Ay, h) <logN(&,,[0,an],|-|) +log N(&4, By, | - |2)

an .
Slog =% + Cyné?.
€n

The right-hand side is bounded by a multiple of 72 hence verifying the entropy condition.

3.4.5 PRrROOF OF THEOREM 3.5

Under the prior II, the number of knots J has, by construction, a shifted Poisson distribution. By Stirling’s ap-

proximation, this implies that for large j,
]p(] > ]) < e_Cljlogj) ]PJ(] _ ]) > e—Czjlogj

for some ¢;, c; > 0. For the sequence of inner knots k constructed in the definition of the prior the mesh size
M (k) = max{|k; - kj_1|} and the sparsity m(k) = min{|k; — k;_y|} satisfy

P(m(k) <j2|J=j)=0, P(M(K)<2/j|]=j)ze 8.

The first of these facts follows trivially from the construction, the second one by bounding the probability of
interest from below by the probability that every of the consecutive intervals of length 7/ contains at least one

knot. For the B-spline coefficients, by independence,
P(|0 - 00w <[] =j) 2 ¢

for all 69 € [ My, M,)’. Theorem 1 of [7] deals exactly with this situation. In the present setting the theorem asserts
that if Ay € H, ([0, 7]) and M; < Ay < My, then for ], J, > g and positive &, > &, such that e, — 0, né2 — oo

and
z -1/a _ _ 3
2( En ) <Ju, logJ, $log i Tn logL" Snek, néd <J,logly, (3.14)
|40l ce &n €n
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then there exist function spaces (of splines) A, and a constant ¢ > 0 such that

T : A - Aol < 28,) 2 e85, (3.15)
TI(A ¢ A,) § e 9", (3.16)
log N (&> Aps | - ||2) $ nés. (3.17)

Now observe that the first two inequalities in (3.14) hold for
&, =n Tm log’n, J,= Knis log?n,
provided K is large enough and g > —p/a. The third and fourth inequalities then hold for
Ju = Loz log' n, &, =n"7%=log n

if L is large enough and 2p < r +1 < 2s. To complete the proof we have to link (3.15)-(3.17) to the conditions
(3.4)-(3.6) of Theorems 3.1 and 3.2. Note that since (3.5) should hold for all c3 > 0, we need to have

- 1
Jnlog — « néf,.
En

For our choices of ], and &, this holds if 2p > q + 1. This amounts to choosing p > &/(1 + 2a). Then if we define

<~ | Jn 1

En=1\| —log—

no Cé,
the right-hand side of (3.15) equals exp(—2n&2). Moreover, it holds that &, ~ n~%/(1+2%) (log n)(4*)/2, 50 if we
make sure that p > (q +1)/2, the desired inequality (3.4) holds. The considerations above imply that (3.5) then
holds as well, for any ¢; > 1. Recall that we found that the entropy condition holds for ¢, ~ n~*/(*29) (log n)?,

provided s > p. This means that we should choose p, g, r and s above such that

1
1+2a

p> r=2p-1, s>p, q=-

1+2a’

Since the intensities in A, are uniformly bounded by a common constant (see the proof of Theorem 1 of [7]),
(3.17) implies that (3.6) is fulfilled.

3.4.6 PROOF OF THEOREM 3.6

We again verify the conditions of Theorem 2.1 of [37].
Note that by the triangle inequality and the fact that A is increasing,

2O B (1) - (0]

A+BD - Ap|e <|A-210(0)| +B|D - ———F—=
|4+ BD Aol < |4~ 20(0)] + B AO WG

Hence, by independence, there exists a constant Cy > 0 only depending on A such that for ¢ € (0,1), with
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vo = (Ao = 20(0))/(Ao(7) = 20(0)),

TI(A < |A = Ag|loo < Cot)
> P(|A - A(0)| < £)(1B ~ (Ao(7) - 16(0))] < )P(|D - vo | < 3e).

The first two factors on the right are bounded from below by a constant times ¢. To deal with the third one we
argue as in Example 6.1 of [38]. Let ¢ > 0 be fixed for now and let 0 = #, < #; < --- < t§y = 7 be points such that for
I; = (t;-1, t;], vo(I;) < e. Since vy has total mass one, these points can be chosen such that N < 1/e. Now it can
be verified that | D - vo|leo < ¥ jen |D(I}) = vo(I;)| + € and hence

P(|D = vl <38) 2 P( Y [D(I}) - vo(1})] < 2¢).
j<N
Lemma 6.1 of [38] implies that for £ small enough, the probability on the right is bounded from below by a
constant times exp(-c(1/¢) log(1/¢)) for some ¢ > 0. Putting things together we find that for ¢ > 0 small enough
and constants cg, C > 0,

1 1 1 1
H(A : HA _AOHOO < Cos) 2> gze_cgl()gg > e—clglogg.

By using the inequalities derived in Lemma 3.1 for continuous data and on Section 3.4.2 for the discrete setup,

for all sufficiently small € > 0,
{A: KA do) < Ce%, V(A Ag) < Ce?} 2 {A 1| A= Ap|leo < Cog}s

for some C > 0. Combining this with the previous statement it follows that the prior mass condition is fulfilled
for &, a multiple of (n/logn)™'/>.

Next we define sieves A, = {f : [0,1] = [0,2L,] | f increasing}, for L, a sequence of positive numbers
further determined below. Since the random function A + BD is an increasing function on [0, 1] which takes
values in [0, A + B],

II(A) <P(A>L,)+P(B>Ly,).

By the assumption on the tails of A and B, this is bounded by a constant times exp(—c n'/*log n) for L,, ~ log® n,

—Cyné? o
Ginéy for any constant C; > 0. Hence, the remaining mass

which in turn is bounded by to be bounded by e
condition is satisfied.

We use now the bounds on the Hellinger metric obtained in Lemma 3.1 for continuous data and in Section 3.4.2
for discrete data. For the entropy condition we note that the functions in \/A,, are increasing and take values in
[0,+/2L, ]. Hence, by Theorem 2.7.5 of [98], we have the entropy bound

VL,

log N(&, Ay, h) Slog N(e, VA, | -12) <logNpy(e, VA, I-12) s -

This shows that the entropy condition is satisfied for &, = (n/v/L,)™/? ~ (n/logn)™"/>. We conclude that we

-1/3

have the posterior rate (n/logn) ™" relative to the Hellinger distance.






Adaptive Priors based on Splines with Random Knots

S PLINES ARE useful building blocks when constructing priors on nonparametric models indexed by functions.
Recently, it has been established in the literature that hierarchical priors based on splines with a random number of
equally spaced knots and random coeflicients in the corresponding B-spline basis deliver, under certain conditions,
adaptive posterior contraction rates, over certain smoothness functional classes. In this chapter we extend these
results for when the location of the knots is also endowed with a prior. This has already been a common practice
in MCMC applications, but a theoretical basis in terms of adaptive contraction rates was missing. Under some
mild assumptions, we establish a result that provides sufficient conditions for adaptive contraction rates in a range
of models, over certain functional classes of smoothness, up to the order of the splines that are used. We also
present some numerical results illustrating how such a prior adapts to inhomogeneous variability (smoothness)

of the function in the context of nonparametric regression.
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4.1 INTRODUCTION

The Bayesian approach in statistics has become quite popular in recent years as an alternative to classical frequen-
tist methods. The main appeal of the Bayesian methodology is its conceptual simplicity: given a model for the
observed data X ~ Py, f € F, some space of functions, put a prior on the unknown parameter f and draw infer-
ences based on the resulting posterior I1( f|X). Knowledge about the model under study can also be incorporated
into the inference procedure via the prior. However, some seemingly “correct” priors can lead to unreasonable
posteriors, especially in nonparametric models. It is therefore desirable to place ourselves in a setting where it is
possible to assess the quality of the resulting posterior from some objective point of view. This gave rise to the
development of the notion of contraction rate (cf. [38]), a Bayesian analog of a convergence rate: data is assumed
to come from a fixed probability measure Py = Py, for a “true” fo € F; the contraction rate is then the smallest
radius such that the posterior mass in balls (with respect to an appropriate distance) of probability measures
around Py converges to 1in Py-probability as some information index such as a sample size goes to infinity.

Some general results about posterior contraction rates establish sufficient conditions on prior distributions
such that the resulting posteriors attain a certain contraction rate. In this spirit, when studying specific priors,
some authors now choose to present their results in the form of say meta-theorems which claim that sufficient
conditions (such as the ones in [38]) required to attain a certain range of contraction rates hold for their choice
of prior; cf. [25, 86, 95] and further references therein. We adopt this practice here as well.

In the case where fj is a function from some functional space of smoothness «, the posterior contraction
rate is typically compared to the convergence rate of the minimax risk (called optimal rate) over that space in the
estimation problem. For example, if we observe a sample of size n and want to estimate a univariate «-smooth
function (e.g., density or regression function), the typical optimal rate is of order n~*/ () possibly up to a
logarithmic factor depending on the risk function. If the smoothness parameter « is unknown, and one wants to
build estimators which attain the optimal rate corresponding to « but do not depend explicitly on «, then one
speaks of an adaptation problem. In a Bayesian context, the adaptation problem consists in finding a prior which
leads to the optimal posterior contraction rate (usually up to a logarithmic factor) for any a-smooth function
of interest and does not depend on the smoothness parameter a. Such priors are called rate adaptive. There is a
growing number of papers, where this problem has been studied in different settings; cf. [6, 25, 86, 95, 97] among
others.

Splines, in particular, can be used when constructing adaptive priors. A spline (cf. [23]) is a piecewise poly-
nomial function designed to have a certain level of smoothness which is referred to as its order. Splines are easy
to store, differentiate, integrate and evaluate on a computer, and are extensively used in practice for constructing
good, parsimonious approximations of smooth functions. The points at which the different polynomial pieces of a
spline connect are called knots. If an order (read: maximal polynomial degree) and a set of knots is fixed, then the
space of all splines with that order and those knots forms a linear space which admits a basis of so-called B-splines.
Any spline of a fixed order is consequently characterized by a set of knots and its coordinates in the B-splines
basis corresponding to those knots. Randomly generating a number of knots and, given those, generating random
coordinates in the corresponding B-spline basis with equally spaced knots results in a random spline whose law
can be used as a prior. If, given the number of knots, the coordinates in the corresponding B-spline basis are
chosen to be independent and normally distributed, then the resulting spline has a conditionally Gaussian law

and was studied by [25] by using Reproducing Kernel Hilbert Space techniques. In [86] a more general, random
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series prior was proposed: the coefficients in the series are not necessarily independent or Gaussian and a basis
other than the B-spline basis can also be used.

The case where the locations of the knots are also random is not covered by the results of either [25] or
[86]. However when practitioners put a prior on the number of knots they almost invariably also put a prior
on the locations of the knots (e.g., [27, 30, 85]) — a Poisson process is a popular choice. Their motivation for
allowing arbitrarily located knots seems to be twofold. Firstly, this is attractive from the implementation point of
view: designing reversible jump MCMC samplers is much simpler if any collection of knots is allowed since new
knots can be inserted at arbitrary positions causing only localized changes in the spline. Secondly, the resulting
posterior based on the prior with random locations of the knots is expected to be more adaptive with respect to
inhomogeneous smoothness of the function of interest: the function may not have a fixed level of smoothness
throughout its support, it may consist of rough and smooth pieces. To sustain an adequate level of accuracy over
the whole support, more knots are needed in rough pieces and less in smooth ones. Therefore, to make it at least
possible for the resulting posterior to pick up eventual spatial features of the function, the prior has to be flexible
enough to model random locations of the knots.

In this chapter, we extend the results of [25], and those of [86] with respect to the prior with random knots: we
add one more level to the hierarchical spline prior by putting a prior on the location of the knots of the spline as well,
making, in fact, the basis functions also random. Under some mild assumptions on the proposed hierarchical
spline prior, we establish our main result for the proposed prior, providing sufficient conditions for adaptive,
optimal contraction rates of the resulting posterior in a range of models (among others: density estimation,
nonparametric regression, binary regression, Poisson regression, and classification). In doing so, we provide
a theoretical basis for the common practice of using randomly located knots in spline based priors. Another
interesting feature of a prior with random knots locations is that it leads to the posterior of the knots vector
which provides (some sort of empirical Bayes) inference on the variability (smoothness inhomogeneity) of the
underlying function. We present some numerical results illustrating how such a prior adapts to inhomogeneous

variability (smoothness) of the function in the context of nonparametric regression.

4.2 NOTATION AND PRELIMINARIES ON SPLINES

First we introduce some notation. For d € Nand1 < p < oo denote by |x||, = (Zil \xi|P)1/p the [,-norm of
x = (x1,...,%7) € R? and by |x] oo = max;_;__4|x;|. For1< p < oo let the L,y-norm of a function f on [0,1] be
715 = (fy 1FGP dx)P and |l = sup,egog £ ()]

We use S (respectively 2) to denote smaller (respectively greater) or equal up to a constant, the symbols a v b
and a A b stand for max{a, b} and min{a, b} respectively. The covering number N (¢, S,d) of a subset S of a
metric space with balls of size ¢ is the smallest number of balls (with respect to distance d) of radius ¢ needed to
cover S.

Now we provide some preliminaries on splines, which can be found, for example, in [81]. A function is called
a spline is of order g € N, with respect to a certain partition of its support, if it is ¢ — 2 times continuously
differentiable and when restricted to each interval in this partition, coincides with a polynomial of degree at most
q — 1. Consider g € N, g > 2, which will be fixed throughout the remainder of this text. For any j € N, such that
i>qlet Kj={(ki....kj-q) €(0,1)779: 0 < ky <+~ < kj_q < 1}. We will refer to a vector k = k; € K; as a set of

inner knots; the index j in k; will sometimes be used to emphasize the dependence on j. A vector k € K; will be
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said to induce the partition { (ko> k1), [kis k2), s [kjogs kj—gn1 } with ko = 0 and kj_441 = 1. For any k € K; we
call M(k) = max/_ q“ |k; — ki_1| the mesh size of the partition induced by k and m(k) = min]_ q“ |ki — ki_1| the
sparseness of the partmon induced by k. For ak € K, denote by Si = ;! the linear space of sphnes of order g on
[0,1] with simple knots k (see the definition of knot multiplicity in [81]). This space has dimension j and admits
a basis of so-called B-splines {By 1, ..., By j} = {Bk P Bl'ij}. The construction of {By,..., By j} involves the
knots k_g41,..., k-1, ko ki ... s kjgs kj—gi15 kj—gr2s - - . » kj, with arbitrary extra knots k_g41 < - < k_y < kg =0
and 1= kj 411 < kj_g42 < -+ < kj. Usually one takes k_g41 = -+ = k_y = ko=0and1= kj_g+1 == kj, and we
adopt this choice here as well. These basis functions are nonnegative: By ;(x) > 0, for all x € [0,1]. Besides, they

have local support and form a partition of unity:

j
Bii(x) =0 for x ¢ [k_geirki]l, D Bii(x) =1 forallx € [0,1]. (4.1)
i=1
To refer explicitly to the coordinates a = (ay,...,a;) € R/ of a spline in a specific B-spline basis with inner knots

k, we write s 5(x) = Z{Zl a;Byi(x), x € [0,1]. Since 3-_ By ;(x) =1, it is easy to see that for any sy a, Sib € Syl
Iska = sicbll2 < lIska = skblleo < @ =Dl < la—b. (4.2)

Splines have good approximation properties for sufficiently smooth functions provided they are defined on a
partition with appropriately small mesh size. We say that a function f on [0, 1] belongs to a generic smoothness
class Fy, a > 0, if f is Lipschitz, ice., f € L, (La,[0,1]) = {f : |f(x1) = f(x2)| € La|x1 — x2[*, x1, x5 € [0,1]} for

some kg4, Ly > 0, and for any set of inner knots k there exists a spline sy , € SE such that for some bounded Cy
If = skalleo < CrM* (k). (4.3)

A leading example of a smoothness class F, is the Holder space Hy = Ho(L,[0,1]),0 < a < g, which is
the collection of all functions f that have bounded derivatives up to order ap = || = max{z € Z : z < a}
and such that the ag-th derivative satisfies the Holder condition | (%) (x) — £(%0) ()| < L|x — y|*~%, for L > 0
and x, y € [0,1]. In this case, a well-known spline approximation result (cf. [23]) states that (4.3) holds with
Cr=0GCylf (@), for some constant C, depending only on g. Other examples of smoothness classes for which
the approximation property (4.3) hold, include a-times continuously differentiable functions, Sobolev and Besov
spaces; cf. Theorems 6.21, 6.25 and 6.31 in [81].

4.3 MaIN RESULT

We begin by describing a hierarchical prior on § = 87 = U2 Ugex; S]’Z : first draw a number J € N, J > g; then,

Jj=q
given J, generate independently (J - q) inner knots K; € K; and also independently, ] B-spline coefficients 6 ¢ R/.
Our prior on S will be the law of the random spline s, . We impose the following conditions on this prior. For

1,62 > 0,0 < 1, £, < 1and all sufficiently large j,

P(J > j) s exp (- cijlog" j), (4.4)
P(J = j) 2 exp (- c2jlog” j). (4.5)
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Forsomet>1,¢3>0,0<t;3<1,andall j>gq,

P(m(K;) < 8(j)lJ = j) = 0, (4.6)
P(M(K;) < 7/jl] = j) 2 exp ( - c3jlog" j), (4.7)

where (i) is a positive, strictly decreasing function on N. Without loss of generality assume that §(i) <1,i € N.
For each j > g, the conditional distribution of @ € R/ satisfies the following condition: for any M > 0 there exists
co = co(M) such that

P([|6 - 0o]l o < €lJ = j) 2 exp (- cojlog(1/¢)) (4.8)

for all e > 0 and all @ € R/ such that |8y < M.

For examples of particular choices on the components of our hierarchical prior which verify these conditions

we refer the reader to Section 4.5.

Denote C/(M) = [-M, M]/. The following theorem is our main result.

Theorem 4.1 (Prior bounds)
Let | fooo < M and fo € Fy so that (4.3) holds with Cy,. Let e, €, be two positive sequences such that e, > &,

&, > 0asn — oo and néi > 1. Assume that there exist sequences J,,J, > g, M, > 1 and a constant cpr > ¢

satisfying:

]nMn

Jilog| - 50 )] S ne2, (4.9)
nés < Julog" Ju, P(0 ¢ C/(M,)|] = j) S exp(~cmnéy), q<j<Jn, (4.10)

£ o - 1
i <Jn. log?V®], <log—. 411
[T“Cfo] <Ju» log?'? ] 087 (4.11)

Let S, = Uﬁiq Upexcd) {sio € S : 0] 00 < My}, where IC? ={k e K;: m(k) > &}. Then it holds that
J

log N(en,Sns | - |12) § ned, (4.12)
P(SK/)Q ¢ Sn) S exp{ - cméf,}, (4.13)
]P)(”SKI)Q — folleo < 2én) 2 exp{ —(co(M) +ca+c3)]a log(l/én)}. (4.14)

Proof: First we establish (4.12). Let L,,(j) = 4M,,j(g+1)(8(j)) "V and j > g. Let {,.. ., 0,,, } be an ¢, /2-net
of theset {6 e R/ : |0] o < M,} and let {xi,...,X,,} bean e,/(2L,(j))-net of {x e R/"9: x € (0,1)/79}, both
with respect to the |- | o -norm. Then, by using (4.2) and Lemma 4.2 (Lemma 4.2 is applicable since ¢,/ (2L, () ) <
2/(q —1) for sufficiently large n), {sx, 9,»k = 1,...,my, | = 1,...m,} forms an ¢,-net of Ukelc;;(j) {sk0 € S
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|6] 0 < M, } with respect to the | - ||o-norm. By using this fact, we obtain for sufficiently large n that

In
N(Sn’ Sns || - HZ) < N(Sm S ||+ Hw) < ZN(sn, UkeK«?(J‘){Sk,B € 51‘3 0] < Mn}> |- HOO)
j:q J

]n . .
gz[w(?,{eewwmwsMn}J-|oo)N( = ,<o,1)f-q,|-|oo)]
J=q

2Ln(j)
Jn Jn=q 2 In
< (M) (PaUn )" (1002 DM )T
&n &n e2(8(Jn))at
The last relation and (4.9) imply (4.12):
. ]nMn 2
logN(Sna Sna H HZ) S]n IOg(sné‘(]n)) S Sn'

Now we check (4.13). From the definition of S,,, the relations (4.4), (4.6) and (4.10), it follows that
P(sk,0 # Sn) <P({U> Tay o[{a <T < T} 0 ({m(K;) < 8(j)} v {0 ¢ C/(M)})])
In .
<P(J>J,) + 2 P(J = j)(P(m(K;) < 6(j)IT = j) + P8 £ CH(M,)|] = )
J=q

hS exp{ —cJn logt1 ]n} + 0+exp{ - cMnéﬁ} S exp{ - clnéfl}.

It remains to prove (4.14). First note that, by using (4.3) and (4.11), for all j > J, and for all sets of knots kje K;
such that M(k;) < 7/}, there exists a spline sy g, € S,];j (of course, 8 = 0o(k;) = 0o(k;j, fo)) such that

| fo = si,00 o0 < CuM*(K;) < Cp, 7T, % < . (4.15)

Since | fo[o < M, there exists an & > 0 such that the spline sy, g, from (4.15) satisfies |si;,g,[lcc < M — ¢
for sufficiently large n. Besides, J, must grow with # in view of (4.11). Then, according to Lemma 4.3, there
exists a § = 0(Fy, ¢) such that, for sufficiently large n, [0y (k;)[o < M for all sets of knots k; € /C; such that
M(kj) <7/]s<dand j> J,.

A Introduce the events: E{ = {M(K]) < 1/j}, Eé = {lfo = sK;,00 (k) |0 < En} Eé = {|00(K;) - 0]|cc < &u},
E} = {|lfo = sk,.0ll0 <284} and EL = {||09(K;) | e < M}. Using the argument from the previous paragraph, the
triangle inequality, (4.2) and (4.15), we obtain that

El"cEl, ElcEl, ElnEicEl, j>q. (4.16)
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Combining (4.5), (4.7), (4.8), (4.11) and (4.16), we prove (4.14):

P([lsx,.0 ~ folleo <28x) = P(E}) > P(J = Jn)P(E}]] = J»)
>P(J = J)P(Ey n E}|T = J.)
>P(J = J)P(E[" nE} n El'|] = ],,)
=P(J=J.)E
=P(J=J.)E
>P(J = Ja)P

P(E[" nE} nEl'|] = ], K;,)]
I{K;, € E[" n ELYP(EL|) = ], K, )]

EP'[J=7,) inf P(|0 - 60]e <l = ]
UV =u) ,inf | P16~ 8ol <&l =)

A~~~ —/ /o~

2exp (= (c2+c3)]nlog?™ J,) exp (- co(M)]ylog(1/é,))
2exp (= (co(M)+ca+c3)fulog(1/2n)).

Remark 4.1 Condition (4.6) is used in the proof of Theorem 4.1 exclusively to enforce Z;Zq IP(] = j)IP(m(Kj) <
S(H| = j) to be zero, when proving (4.13). Inspection of the proof shows however that, instead of condition (4.6),
it would suffice to require this sum to be upper-bounded by a multiple of exp ( - clnéi). Although this would be a
weaker requirement, typically the sequence &, will depend on the unknown smoothness a. To avoid the dependence
on &,, a slightly stronger condition (based on the fact that né> is of a smaller order than n as n — o) can be

proposed. Namely, if condition (4.6) is replaced by

Jn
S P(J = j)P(m(K;) < 8(j)|J = j) < csexp(—can), (6)

J=q

for some cy, ¢c5 > 0 and a function §(-) as in (4.6), then the conclusions of Theorem 4.1 remain valid as long as ], is
a sequence satisfying (4.9) and (4.10); cf. Section 4.5 for a comparison of (4.6) and (6°).

Remark 4.2 Ifthe range of the underlying curve f; is contained in some known interval [a, b] c R, then, according
to Lemma 4.3 and the proof of property (4.14), the prior on 0 € R/ can be chosen to be supported on, say, [a—1, b+1]/
so that (4.8) has to hold only for 0y € [a—1, b+1]/. Condition (4.10) will be trivially satisfied for M,, > (1-a)v (b+1).

Remark 4.3 If (4.26) is assumed instead of (4.7), the proof of (4.14) can then be simplified a lot, as in this case one
can condition on the event {K; =XKj } so that 8 = 0y(k; ) becomes fixed and P(E/|] = Jus K; =k;)=1

4.4 IMPLICATIONS OF THE MAIN RESULT

We clarify now the relevance of our result. Consider a family of models P = {IF’f s f e F A}, Fa = YgenrFas
with densities p; with respect to some common dominating measure. Assume that we observe a sample x(m =

{Xp,.., X} ~ pf,:), X; ind Pfy» fo € Fo for some unknown smoothness a € A. The Bayesian approach consists of
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putting a prior measure IT on F ¢ F 4 which, together with the likelihood p]((") ,leads to the posterior distribution
I1(-[X(") via Bayes’ formula:

Lo (X)) dri(f)

[ o8 (X)) an(f)

for a measurable A ¢ F. The asymptotic behavior of the posterior distribution can be studied from the point of

n(Ax™) =

view of the probability measure Py = P ; see [38].

For two densities ps and p, with f,g € F4, define the (squared) Hellinger metric h*(py, pg) = 2(1 -
Eg\/Pr(X)/pg(X)),Kullback-Leibler divergence K(py, pg) = —Eglog (p(X)/pg(X)) and the Csiszar f-divergence
V(ps pg) = E,log® (pf(X)/pg(X)). Define also the ball B(¢y,, fo) = {f e F:K(f, fo) <&, V(f, fo) < 82}.

The following theorem is a version of Theorem 2.1 from [37] which makes a statement about the asymptotic

behavior of a posterior measure.

Theorem 4.2 (Theorem 2.1 of [38])
Let T1,, be a sequence of priors on F. Suppose that for two positive sequences k, > &, such that nks — oo and

Ky = 0asn — oo, sets F, € F and constants by, by, bz, by > 0, the following conditions hold:

log N (%, Fur h) < bynics, (4.17)
I, (F\Fy) < bye” B+9m%5 (4.18)
T, (B(Ry» fo)) > bae "5 (4.19)

Then, for large enough M > 0, T1,(f € F: h(ps. pj,) > Mxn|X(")) — 0.as n — oo in Py, -probability.

The conditions of this theorem require the existence of a sieve F,, with small entropy (4.17) which contains most
of the prior mass (4.18) and with enough prior mass around the parameter f, which indexes the “true” underlying
measure of the data. Assume now that the models in P are such that for d* being h>, K or V,d*(py, ps,) S | f—fol3-
If in addition one can prove that in the considered model h(py, ps,) 2 | f = foll2, then Theorem 4.2 delivers
a contraction rate x, with respect to the L,-distance as well. Some examples of models for which the above
relations between norms can be established are, white noise, density estimation, non-parametric regression, binary
regression, Poisson regression and classification; cf. [25, 38, 86]. We should note here that it requires a fair piece of
effort to implement this idea for many concrete models, only for the white noise model the above relations between
norms are straightforward. Once these relation between norms are established, one can apply our meta-theorem
(Theorem 4.1) to obtain an adaptive contraction rate that essentially verifies (4.17)-(4.19) for our spline-based

prior. We summarize this in the following theorem.

Theorem 4.3 (Contraction)

Let T1I be the spline prior described in Section 4.3. Consider a family of models P = {Pf i fe fA}, Fa=YgeaFu
with densities p ¢ with respect to some common dominating measure. Assume also that the models in P are such
that d*(ps, py,) S | f — fol3 for d* being h*, K or V. Take an i.i.d. sample XM =Xy, X X~ Py fo € Fu
[folloo < M, for some unknown smoothness o € A, a < q. Consider a prior I1 that verifies (4.4) through (4.8) for
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certain constants cy, ¢z, ¢3, ty, t; and t3. Assume that at least one of the two conditions, a > Lor ty At3 < 1, is fulfilled.

Then, for large enough C > 0, II(f € F : h(ps.py) > Crn|X(”)) — 0asn — oo in Py-probability for
ry = n~%Qe) (og )/ Qus)+(1-0)/2, Ifh(ps.pg) 2 IIf = fol2 then in the previous statement the Hellinger

distance may be replaced by the L,-distance and the statement remains valid.

Proof: We have that for some constant p > 0and F =S, F,, = S,,

N (K> Fus 1) < N(u/p> Fos |- |2), (4.20)
I(F\F,) =P(sk,0 ¢ Fn), (4.21)
T(B(#&n» f0)) 2 P(||sk,.0 = folleo < %n/p)- (4.22)

The first inequality follows from the fact that by assumption h(py, pg) < p| f - gll2 and so a x/p-cover of F,
according to | - |, induces a x-cover of F, according to h. Then, since d*(py, py,) < p| f — fol|3 for d* being K
or V, we have B(%,, fo) 2 {f eF:|f-fola< k/p} and the last inequality follows.

By assumption fy € F, satisfies the conditions of Theorem 4.1; assume (4.3) holds for some Cy,. Consider
then a prior that satisfies (4.4)-(4.8). Let us present a choice of quantities M,,, §(j), J»» Ju> €1 and &, that meet
conditions (4.9)-(4.11). First of all, the sequence M, can be taken a polynomial in n (for instance, for normal or
exponential conditional priors for 8 € R/ in (4.10)) and 1/8(j) a polynomial in j. Next, note that there is no J,
that satisfies (4.11) if both & < 1and t; A t3 = 1 hold. If either a > 1 or £, A #3 < 1, then the best possible choices are
Jn=Jn(C) = TC%“(E,,(CI))*I/“ so that the first inequality of (4.11) is satisfied, &, = ,(C;) = C(log n/n )%/ (2«+1)
for sufficiently large C; > 1 so that the second inequality of (4.11) is satisfied, J,, = C;n"/(%*1) (log n)2¢/(2a+1)-t
for sufficiently large C, (any C, > C? will do) so that the first inequality of (4.10) is satisfied, and finally,

€y = C3n*0¢/(20¢+1)(10gn)a/(2a+1)+(1—t1)/2

for sufficiently large Cs so that (4.9) is satisfied. Since these quantities satisfy (4.9)-(4.11), Theorem 4.1 implies
conditions (4.12)-(4.14) for the quantities defined above. Besides, we take constants C;, C;, C; so big that (4.13)
and (4.14) also hold for &, (1/C;) and J,,(\/Cy).

Now, take , = 2pe,, and &, = 2pé,(+/C;). Then it follows from (4.12) and (4.20) that
N(Kn,fn,h) < N(kn/p> Fs | |2) = N(ews Fs | - 2) $ ne? s nict. (4.23)
Next, using (4.21) and (4.13) for &,(C;) and J,(C;), we obtain that

(F\Fyu) = P(SK],B $Fn) s exp{ - Clnéﬁ(cl)}
= exp{ - cl(2p)_2C1m%ﬁ} < exp{ - Snkﬁ} (4.24)

for sufficiently large C;. Denote K = (co(M) + ¢ + C3)TC}£“(2p)_20c/(2tx +1), then

(co(M) + ¢+ &3) ] (v/C1) log(1/4(\/C1)) = KC; T nic2 (14 0(1))
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as n — oo. The last relation, (4.22) and (4.14) for £,(1/C;) and J,,(1/C;) imply that

TI(B(Rus £0)) > P(Isk,0 ~ folloo < 28.(1/C))
2 exp { - (co(M) + ¢+ ¢3)]u(v/C1) log(1/64(\/C1)) }

2 exp{ - KC;(M/“)nkf,} > exp { - nki} (4.25)

for sufficiently large C;. Thus, for sufficiently large C; (and C,, Cs), the relations (4.17)-(4.19) follow from (4.23),
(4.24) and (4.25) respectively.

Finally, applying Theorem 4.2 (since (4.17)-(4.19) are fulfilled), we conclude that the contraction rate of the
resulting posterior is at most ¢, which appears to be optimal (up to a logarithmic factor) in a minimax sense

over the Holder class H, (also over a-smooth Sobolev class). O

Remark 4.4 A priori, it may be unknown whether a > 1 or not, or it may be simply known that o < 1. We can
however always ensure the condition t, A t3 < 1 by an appropriate choice of prior. For example, we take a geometric
prior on ] so that t, = 0 and a prior on K; such that (4.26) (which implies (4.7)) holds with, say, t3 = 0.

4.5 EXAMPLES OF PRIORS

We give now examples of particular choices for the several components of our hierarchical prior that verify
conditions (4.4)—-(4.8), (6’) and the second relation in (4.10).

As for the prior on the number of basis functions, assumptions (4.4) and (4.5) hold for the geometric, Pois-
son and negative binomial distributions; cf. [86] (assumption (5) is slightly different from the corresponding
assumption (B1) in [86]). Assumption (4.8), in turn, will trivially hold if we assume, for example, the coordinates
of 6 € R/ to be (conditionally on J = j) independent and identically distributed according to a density ¢ that
is uniformly bounded away from zero on the interval [-M, M]. On the other hand, the prior distribution on
6 € R/ (conditionally on J = j) should have sufficiently light tails so that the second requirement in (4.10) holds
for a sequence M, that converges to infinity as n — oo not faster than polynomially in #. It can easily be checked
for normal and Gamma densities ¢. Let us consider standard normal ¢. As g < j < ], and taking M,, = n, we

immediately derive the required relation:

]nZeXp(—Mfl/Z)
V21M,

There is an ample choice of priors on Kj, given J = j, that satisfy condition (4.6). First note that this condition

P(6 ¢ C/(M)|J = j) < /(61| > My [T = ) < < exp(~cynél).

enforces the prior on the location of the knots, for each J = j, to be such that, with probability 1, adjacent knots
are at least §(j) apart. The function 1/8(j) can be taken a polynomial in j of high degree which makes the
requirement less restrictive. If a certain sequence ¢, verifies the conditions of Theorem 4.1, then an increase in
the exponent of 1/8(j) can be accommodated by making ¢, larger by a multiplicative factor (cf. condition (4.9)).

A simple choice for the prior on Kj, given J = j, is to pick (j — q) knots uniformly at random, without
replacement, on a uniform §(j)-sparse grid. This construction is possible if § is chosen in such a way that

[1/8(j)] > j— g for all j. Another way is to generate the (j — g) inner knots in K; sequentially in the following
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way: add a knot K; uniformly at random on the interval [8(j),1- 8(j)], then a knot K; uniformly at random on
the interval [§(j),1 - 6(7)]\(Ki - 8(j), Ki + &(j)) and so on. Finally, take the ordered K; = (K(y), ..., K(j_g))-
This construction is always possible if 1/8(j) grows faster than 2(j — q). If J is Poisson distributed, these points
are simply distributed like a homogeneous Poisson process, conditioned to have all points at least §(]) apart.
Clearly, condition (4.6) is satisfied for these two constructions since all prior mass is concentrated on partitions

with sparseness larger than 8( ).

It is also easy to see that condition (4.7) is verified for the knot vectors obtained from one of these two

constructions. In fact, condition (4.7) is trivially fulfilled if, for some 0 < 3 <1,
P(K; =k;) 2 exp ( - c3jlog” j), (4.26)

where k; € K is the set of (j — q) equally spaced inner knots. This suggests a mechanism to assure that any
prior which verifies (4.6) can be slightly modified to also verify (4.7): given J = j, generate a Bernoulli random
variable X with success probability, say, exp(—c3jlog" j); if X =1, then take K; = 1_<j, otherwise pick the knots in
K according to any procedure which verifies (4.6), for instance, one of the two procedures described above. The
resulting prior will trivially satisfy both (4.6) and (4.7).

Condition (4.6) necessarily excludes some knot vectors from the support of the prior (and then also from the
support of the posterior.) It is therefore of interest to design a weaker alternative for condition (4.6). Condition
(6") plays this role in that it allows priors on K which can have any set of knots of [0, 1] in its support. Assuming
condition (6) instead of (4.6) consequently allows us to put positive mass on any vector of simple knots in a
straightforward way: generate a Bernoulli random variable with success probability 1 - c5 exp(—c4n); if X = 1 take
K; = Rj; if X = 0, then take an arbitrary K; (for example, independent, uniformly distributed points on [0, 1]). If
we take 1/8(j) = jand 7 > g, then conditions (6°) and (4.7) are verified. This procedure, although simple, does

place little prior mass on knot vectors with inhomogeneous distributions.

An alternative, less degenerate prior, which verifies (6’) and (4.7) can be obtained in the following way. Given
J = j, first generate a Bernoulli random variable X; with success probability cs exp(—csn); if Xj = 1 distribute the
(j — q) knots arbitrarily; if X; = 0, then generate another Bernoulli random variable X, with success probability
exp(—j); if X = 1, then take (j — q) equally spaced knots k; if X, = 0, then place the knots in such a way that
(4.6) is verified. This procedure allows good control of the prior on the knots while not excluding arbitrary knot

vectors.

Note that the priors described above which verify (4.4)-(4.8) do not depend on the sample size 1, as prescribed
by the Bayesian paradigm. Condition (6°) is a weaker requirement than condition (4.6), but it will introduce a

dependence on the sample size 7 in the prior.

Remark 4.5 The common practice, in applications, of endowing the location of the knots with a Poisson process
prior results in a prior that does not verify assumption (4.6). Assumption (6°), however, will be satisfied if the prior

is modified in such a way that a large enough prior mass is assigned to an equally spaced knot vector.
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4.6 NUMERICAL EXAMPLE

We present here some numerical results. By applying the reversible jump MCMC (RJMCMC) method [40], we
compare two hierarchical priors in the nonparametric regression model. Both priors are based on splines, as
described in Section 4.3, and they satisfy conditions (4.4)-(4.8). The first has a.s. equally spaced knots and in the
second the locations of the knots are random; we therefore refer to these priors as the fixed knots prior and the
free knots prior. We also look into the possibility of using data-driven priors on the knots based on a two stage
empirical Bayes procedure. We say that vector x = (xi,...,x;) € R? is ordered if x; < ... < x4.

Consider n = 1000 observations X(") = {(#;,Y;),i = 1,...,n} from the non-parametric regression model

with regular design points t") = (f1,.... tn), t; = i/n:
Yi:f(ti)-‘rfi) i=1...,n, (M)

where the &;’s are independent, standard Gaussian random variables. It is well known that the relations between
appropriate norms required to apply Theorem 4.3 hold for the model (M). The regression function f(-) is taken
to be the so-called Doppler function

2m-1.05
t+0.05

f(£) =10 t(l—t)sin( ) t € [0,1], (4.27)

which we plot in Figure 4.6.1 together with the observations from the model (M).

True Regression Function and Observations (n=1000)

8 \ \ \ \ \ \

6 _

—— Observations
| | | | | | | —— Regression Function
-8 I I
0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1
Time (t)

Figure 4.6.1: Simulated data from model (M) used in this section (in blue) and the true regression function (in red).
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Now we describe the two priors, the fixed knots prior and the free knots prior. In both hierarchical priors
we endow ] with a (shifted, with support starting with g > 2) Poisson prior with mean v and on each spline
coefficient we put a uniform prior on [-M, M]. In the fixed knots prior, given J = j, the j — q inner knots are
taken to be equally spaced: k; = i/(j—q+1),i=1,...,j— q. In the free knots prior, given J = j, first generate
Uy, ..., Uj_g, uniformly on [0,1— (j—q+1)8(j)) with 8(j) = 1/% and let Uqy < ... < Ugj-g)- Next, take the
knot vector K; with entries K; j = U(;y +id(j), i = 1,..., j — q. We represent the fixed knots posterior density as
7(j. k;, 0, | X(")) and the free knots posterior as ir(j, kj, 0; | X(”)). We have

(5. kj, 0; | X)) o< @ (XU = 5,9, (8)) w71 (2M) 7,
#(jkj, 051 X) o 9, (X = 53 9, (40)) V71 2M) T (1= (j-q + 16(j)) %,

where sy g, (t) = (sk;,0,(11)> - >5k;,0;(tn)) represents the spline sy g, evaluated at the design points t(") and

¢, stands for the density of n independent standard Gaussian random variables.

We implemented RIMCMC procedures for these two priors to sample from the corresponding posteriors. A
generic state of the sampler is a vector ( j-kj, 0 ]-) € Nx R/ x R/, To sample from the posterior corresponding to
the fixed knots prior, we consider three types of moves: a) changing the coeflicients of a spline, b) adding a knot
and c) removing a knot. In addition to these moves, the sampler for the posterior corresponding to the free knots
prior has an extra move: d) changing the location of the knots. These moves are attempted with probabilities
Da> Po> Pe> P> (Pa + Po + Pe + Pa = 1) respectively, which are parameters of the sampler.

A move of type a) corresponds to jumping from the state (j, k;, Gj) to a proposal (j, kj, Sj) where 9; =
0; + n,u and u is a vector of j independent standard normal random variables. This move is attempted with
probability p,. Both #, and p, are parameters of the sampler. Moves of type d) correspond to jumping from the
state ( j>k;, 0 j) to a proposal ( j>x;,0 j) where «; is obtained from k; by perturbing its i-th entry, with the index
i chosen uniformly at random, and then ordering the resulting vector. The perturbation is «; ; = k; ; + 4V, with
v a standard normal random variable. This move is attempted with probability p,; and again, both #; and p, are

parameters of the sampler. The acceptance probabilities for moves of type a) and moves of type d) are given by,

1. 9. | x(n) ~(: ... 0.x(n)
mm(l, ﬂ(fkw"flx)) - mm(l, ”(JJ"JIX))
n(j.k;, 0; | X)) #(ji.k;, 0; | X))

respectively,

where 7 is either 7 or 7.

Now we specify how proposals for moves of type b), where we add an extra knot to the current state of the
chain ( j-kj, 0 ]-), are designed. The proposal will, for both priors, be a state ( j+Lxj, 9 j+1). For the fixed knots
prior we propose ; j;1 = i/(j—q +2),fori=1,...,j—q +1 For the free knots prior, generate a new knot k
uniformly on (0,1) so that k € [k;_yj, k; ;] (with ko j = 0 and kj_g41,; = 1) for some i € {1,...,j— g +1},and
propose 41 = (ki js...» kicyjp ks kijo o .o 5 kjog,j)-

For moves of type b), it remains to describe how the coefficient vector 9;,; is generated in the proposal.
Whatever the vector « 41 is, for the sake of comparing the priors, the procedure for proposing 9, is the same for
both priors. To ease the notation, we abbreviate the current state and the proposed state as ( 7.k, 0) and ( j+1x, 9),
where both x and 9 have one more element than k and 0, respectively. The coeflicients 9 will be obtained via

(perturbed) interpolation at j + 1 points t = t;,; = (f1,..., ti41). Of these j + 1 points, j — g + 2 points are taken
p P J*+1ip j j J+1ip J—q+t2p
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to be the midpoints of the intervals comprised between the adjacent points of the vector (0, x,1) € [0,1]/79*3;
the remaining q — 1 points are the first g — 1 elements from the list 0,1, k1, &;_441, k2, Kj—g, k3, . . . . The vector t is

assumed to be ordered.

Consider now the (j +1) x (j +1) matrices C = C;(«, t) with (i, )-entry Bj(¢;) and the (j+1) x j matrices
D = Dj(k,t) with (i,1)-entry BX(#;). One can show that for our choice of interpolation points C and D are of
full column rank. For a matrix M denote by . (M) the linear space spanned by the columns of matrix M. Then
Z(C) =R, (D) c R/ with dim(.Z (D)) = j. Let w € £*(D) (the orthogonal complement of .Z(D) so
that DTw = 0) which is unique up to scaling. Clearly, the interpolation problem s, g(t) = s g(t) corresponds to
the system of linear equations C9 = D@. Because of the mismatch in the dimensions of 8 and of 9, this relation
between 6 and 9 is not a bijection. Indeed, 8 = (D' D)'D"C9, forall 9, = 9,(0) = C(DO + pw), p € R.

Assume that by default all vectors are column vectors. Our proposals for 9 is the following linear function

that matches the dimensions of 8 and 9:

9=g(0,p)=C" [D w] lnp+ﬁ]’

where p is a standard Gaussian random variable, # > 0 and p = p(0) is taken to be

<5K,w1’ Sk,0 — Sx,wz)

(Sx,wl’ 51c,a)1>

o _ . 2 _
p(0) = arg min I5,9,(0) — k.02 =

>

w; = C'w, w; = C™'DO and (s, 5, ) represents the inner product [01 s1(t)s2(t)dt. The interpretation of g is that
our proposal for s, g is “centered” (cf. [16]) around a good approximation Sx,9; of the previous state sy g. This

central state $x,9, can be seen as an ideal interpolator.

It is straightforward to check that the Jacobian matrix of the mapping g is

]g:]g(ﬂ):cl([D rlw]+[w w]diag((v(;ﬁ(ﬂ),q))),

where diag(v) denotes a square matrix with the entries of v in its main diagonal and V¢p(0) is the gradient of

p(0) with respect to 6. Note that the determinant of this Jacobian does not depend on the gradient of p and is

se([p ])

det(C)

given by
det ( ]g) =7

We then take 77 = 1, det (C)/ det ([D w]), where 1, becomes a parameter of the sampler.

We propose moves of type b) and ) with probabilities p, ; and p.,;, respectively, which depend on j, p, and
Pa (0 <pa+pa<1)ipyj=(1~pa=pa)/2pej=(1=pa=pa)l2j=qand pog1= (1= pa~Ppa) peg-1=0;

for the fixed knots prior take p; = 0. These choices make sure if there are no inner knots in the current state, no
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knot is removed. For moves of type b), the acceptance probability of the proposed state ( j+1x, 9) is as follows:

7(j+1,%,9X")p, ;i
min(l, ﬂ(] £ (L) )pein ’7b) and
(j.k 0| X)) py i01(p)
( A(j+ 1,09 | XM )pein(i-q+1)7" )
min | 1, — ) b
(j.k 0| X)) py j01(p)

for the fixed knots prior and the free knots prior, respectively. Moves of type c) are simply the reverse move to a
move of type b), so we omit the details. For this type of move, we remove one knot from the current state of the

chain, uniformly at random, and recompute the spline coefficients via the inverse of the mapping g.

We let both reversible jump MCMC samplers run for the same number of iterations, both starting from the
state (40, (1/37,2/37,...,36/37), 0) which corresponds to a constant function equal to zero with 38 equally
spaced inner knots. We then collect 10.000 states from the each chain. The results of the MCMC procedures are
given in Figures 4.6.2 and 4.6.3. In both priors we use cubic splines (g = 4) and n = 1000. We take for the fixed
knots prior v = 40, M =15, p, = 0.5, py = 0, 7, = .12 x 107}, 17, = 3 x 1072 and 74 = 0. For the free knots prior,
we choose v = 40, M =15, p, = 0.66, pg = 0.33, 11, = 1.18 x 107}, 57, = 6 x 107> and 774 = 4 x 1072

For both priors, we compute the proposed spline coeflicients in the same way (described above), for the sake
of comparing their performance. This is, however, not strictly necessary for the free knots prior. In this case, the
insertion of a new knot only has a local effect on the spline: if all coefficients are kept the same, it is simple to
propose a reasonable procedure for the new coeflicient associated with the newly added B-spline. In case of the
free knots prior, adding and removing knots from the current state of the chain can be made in a straightforward
and computationally efficient way which does not involve recomputing all of the coeflicients of the spline in the

proposal.

As the simulations results in Figures 4.6.2 and 4.6.3 show, the free knots prior seems to outperform the
fixed knots prior: the free knots posterior detects better the high and low variability regions of the regression
function and facilitates the placement of more knots in the high variability region. In its turn, the fixed knots
prior uses roughly 25% more knots to actually achieve a worse fit: 29 knots for the fixed knots posterior against
around 23 knots for the free knots posterior. The fixed knots posterior fails to assign a number of knots that is
compatible with the (inhomogeneous) structure of the true regression function f over the whole interval [0, 1].
As a consequence, the posterior seems to compromise on a number of knots which is clearly not sufficient for
the high variability region close to zero (resulting in oversmoothing) and excessive for the low variability region

close to 1 (undersmoothing the data).

Bayesian analysis based on the free knots prior has the advantage of providing relevant information about
how the posterior chooses to place the knots. The bottom display of Figure 4.6.3 clearly shows a concentration of
knots close to 0. This concentration, accompanied with the wider credible bands in the top display, suggests that
the regression function is more variable (“volatile”) in this region. This can be used to make an inference on the
variability (smoothness inhomogeneity, volatility) of the underlying function and to try and improve estimation

procedures.

In fact, this leads the following data-driven, empirical procedure for selecting a more appropriate prior on
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Posterior mean and point—-wise quantiles (10000 states)

— Posterior mean (n=1000)
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Figure 4.6.2: Results of the MCMC sampler for the fixed knots prior: posterior mean and respective 95% point-wise credible
bands (in blue) and the true regression function (in red).
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Figure 4.6.3: Results of the MCMC sampler for the free knots hierarchical prior. Above: posterior mean and respective 95%
point-wise credible bands (in blue) and the true regression function (in red). Below: histogram of all the knots in all the
sampled states.

the location of the knots: sample j — g knots, i.i.d., from the empirical knot distribution presented in the bottom

display of Figure 4.6.3 instead of our original prior on the knots. Actually, since some regions of the support had



4.6. NUMERICAL EXAMPLE 85

no knots, we mixed the distribution presented in the histogram in Figure 4.6.3 with a uniform distribution: where
before the numbers U; used to define our prior on the knots were uniform on [0, 1-(j—gq+1)8( ])) they are now
this mixture. This was done to give positive mass to the knot locations over the entire support of the regression
function thus facilitating the mobility of the knots. We re-ran the MCMC procedure using such a prior on the

knots. The results are given in Figure 4.6.4. This data-driven prior, at least in our numerical study, does not seem

MCMC output (10000 states) MCMC output (detail)

— Posterior mean (n=1000)
— True Regression function
Point-wise 95% credible intervals

N
T

f(t)

|
|
4t |
|
|

6 . . . . . 6 . . . . .
0 0.2 0.4 0.6 0.8 1 0 0.02 0.04 0.06 0.08 0.1

Time (t)

0 0.2 0.4 0.6 08 1 0 0.02 0.04 0.06 0.08 0.1
Time () Time (t)

Figure 4.6.4: Results of the MCMC sampler for the free knots prior with a data-driven prior on the knots locations. On the
left side we display the same figures as on the right side, but on the interval [0, 0.1]. Above: posterior mean and respective
95% point-wise credible bands (in blue) and the true regression function for comparison (in red). Below: histogram of all
the knots in all the sampled states.

to improve significantly upon the free knots prior. This might simply mean that the free knots prior is already
managing the location of the spline knots adequately, and reinforcing this via a data-driven prior does not give
an extra advantage in the inference procedure. Note that Theorem 4.1 may still be applied to such a data-driven

prior so that the resulting posterior retains (at least) the same theoretical properties as the free knots posterior.

Remark 4.6 To summarize the above discussion, one can obtain the two stage sampler via the following procedure:
a) split the dataset into two (independent) collections of observations; b) run the MCMC procedure on half of the data
to obtain the posterior for the knots and use this to construct an empirical distribution for the knots; c) construct
a new priot, using the empirical distribution of the knots obtained from the first sampler (mixed with any prior
distribution on knots for which (4.6) and (4.7) hold, with a small, yet large enough weight in the mixture); d) run
the MCMC sampler on the remaining data with the prior described in c).
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4.7 TECHNICAL RESULTS

In this section we collect some technical results. Lemmas 4.1 and 4.2 are needed to bound the entropy number of
the sieves S, in Theorem 4.1. Lemma 4.3 claims in essence that if some bounds on the range of the function fy

are known, then this knowledge can be incorporated into the prior on the coefficients 6.

Theorem 4.26 of [81] claims that if all the inner knots of a B-spline are simple, then the B-spline is continuous,
uniformly over its support, with respect to its knots. In Lemma 4.2 we establish a slightly stronger result (a
Lipschitz-type property): if we take two splines with the same coefficients in their respective B-spline basis, then
the Lo, distance between the splines can be bounded by a multiple of the /., distance between the two sets of
knots, as long as the sets of knots are sufficiently sparse. First, we present a preliminary lemma. Denote the (7 +1)-
th order divided difference of a function h over the points #; < -+- < f41as [t1,..., 1 ]h = ([t2, .- tr1 B —
[t ..., trJh) [ (tr—t1), with [¢;]h = h(t;). Ift; = -+ = t,41, thendefine [#, ..., t,]h = h() (t1)/r! fora function

h with enough derivatives at #.

Lemma 4.1 Letie{l,...,r},r>2 (ki...,kyy1) € (0,1)"\ Assume kyy1 —k, >8> 0forv=0,...,i—1,i+
L...,rand kis; — k; = 0. For fixed x € [0,1] take the function h(y) = (x - )1 with y € [0,1] and q > 2. Then
the divided difference |[ki, ..., ky1]h| < 4/8" for x # k; and any § < 2/(q - 1).

Proof: Notice that [h'(y)| = (g —1)(x —y)f2 <(q-1)<2/dforx # y,asq>2and § < =. Next,ifv =i-1,

2

q
kst kysa]h| = B (kyar)| <1/85ifv # i =1, |[Kyst kvsa)h| = [A(Kys2) =B (kyi1)|/|Kvs2—kys1] < 2/8. We conclude
|[kv+1, kv+2]h| <2/8 aslong as x # k;.

For j=2,...,r,define y; = min,_;__r+1-j|ky+j — ky| > (j —1)8. Now we make use of Theorem 2.56 from [81]

,,,,,

and the previous bound:

=l |[kv+1, kv+2]h| 2" 4
ki,... ken1]h| < < <<
[ Al ;)( v ) V2. Pr (r=1)167 = o7
holds for all x # k;. This completes the proof of the Lemma. O

Recall that s g(x), x € [0,1], is a spline of order q > 2 with the coordinates 6 in the B-spline basis and the

inner knots vector k.

Lemma 4.2 Let 0 € R/ satisfies |0]|cc < M and letk, x € IC;S ={k e K;: m(k) > &}. Then ||sk,9 — sx,0/lc0 <
L|k = & o, for L = 4j(q +1)M&~4*V) and any 6 < 2/(q - 1).

Proof: Define k' = (k{,...,k;fq) = (k1.5 K K15 oo kjg) for 1 =0,..., j— g, such that k® = k and K/ ™4 = «.
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By (4.1) and the triangle inequality, we get

‘ oo

J Kk’ J K/~ J k® _ pkivd
Iso = sol . = HZGiBi - > 0:B; - SMH (B —Bf )
i=1 i=1 i=1

1<i<;j 1<i<;j

" jal
< jMmax |BX - B < jMmax > [BX - BKT|
1=0

<(g+1)jMmax max HBI,-(I - Bll-(’+1
1<i<j 0<I<j—q-1

oo’

The last inequality in the above display follows from (4.1). Indeed, the inner knots of B]i‘l and Bli‘,+1 differ only at

the (1+1)-th entry. Therefore, according to (4.1), for each i there are at most (g +1) nonzero terms | Bli‘l - Bli‘l+1

[}

in the last sum.

Theorem 4.27 of [81] gives explicit expressions for the derivative of a B-spline with respect to one of its knots.
These expressions are in terms of the divided differences which satisfy the conditions of Lemma 4.1, so that
combining this with Lemma 4.1 for r = g + 1 (the maximal number of knots in the support of a B-spline) yields
that this derivative is bounded in absolute value by 46~(4*1), except at x = kf ,p» Where it is not defined. Then, as
|k = K" oo < |k = & 00> We obtain that, for x # k!, 1=0,...,j-q-1,

1+1°

1
OB () 4kl

k! k!*1 1+1 I
|Bi (x) - B; (x)| < |klil - kl+1| sup 51+

1
k!, e(0.0) oky,,

Since splines are continuous for all g > 1, so is s g — s, ¢ and we conclude that the same bound must also hold

for x = k!

141- Combining the above two relations concludes the proof. O

The properties of B-splines allow to relate the range of the coeflicients of the approximating spline to the
range of the approximated function. The following lemma generalizes Lemma 1 of [86] for non-equally spaced

knots.

Lemma 4.3 Let f € F, (so that (4.3) holds), a < b, € > 0. Assume that f(x) € [a+¢,b—¢] forall x € [0,1]. Then
there exists a positive constant § = §(Fq, €) such that for any k € Kj, j > q, such that M(k) < 9, the coefficients a
of the approximating spline sy , in (4.3) can be taken to be contained in (a, b).

Proof: Fix ¢, j and inner knots k, assume I = [a,b],a<banda + e < f < b — ¢, for some & > 0.

We use results from Section 4.6 of [81] on dual basis of B-splines. If {By 1, ..., By j} is the B-spline basis

associated with the inner knots k, then there exists a dual basis Ay, ..., A; of linear functionals such that, for each
i,r =1,...,j,A/Bx; = 1if i = r and is 0 otherwise. As a consequence, we obtain that A;sx, = a;, and since
YJ_ Bii(x) = 1, it follows that A;c = c for any constant c and all i = 1,..., j. This dual basis is not necessarily

unique and, according to Theorem 4.41 from [81], can be taken such that |A;f| < Cysup, ;. |f(x)| where I;
represents the support of By ; and constant C; depends only on q. Each I; consists of at most g adjacent intervals
in the partition induced by k and thus the length of I; is bounded by gM (k).
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Let sy 4 be such that (4.3) is fulfilled for f. Then, for any constant c,

|ai—c| = |Ai5k)a—/\,’f+)tif—6|§Mi(sk’a—f)‘-FMi(f—C)’
CiCyM* (k) + Cysup |f(x) — cl.

xel;

IN

Take ¢ = infyer, f(x) andrecallthat f € Fy € L(kq, Ly). Using the Lipschitz property, we derive thatsup .. [ f(x)~
c|=sup, . f(x) —infrer, f(x) < La(q M(k))* and therefore

|a; _igfff(x)| < CCyM*(k) + CiLy (g M(k))"™ < CoM*™** (k).

In the same way, if we take ¢ = sup, ., f(x), we derive that sup, ., |f(x) - ¢ < La(q M(k))** and thus |a,~ -

sup,p, £ ()] € CaMe (k).
Now for 8 = (¢/(2C,))Y(*"%«) we conclude that if M(k) < 8, then a; > infye, f(x) — C;M*a (k) >
infyer, f(x)—¢€/2 > a. For the same choice of § we have a; < sup,.;. f(x)+CaM** (k) < sup,.;. f(x)+e/2<b.
O
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Tracking of Conditional Quantiles

WE CONSIDER the problem of constructing an on-line, recursive algorithm for tracking a conditional quan-
tile in a general setting. The observations are assumed to be a time series, whose terms need not be independent.
We propose a recursive algorithm to track a conditional quantile of a level of our choice; both the level of the
quantile and the quantile itself do not need to be fixed. We establish an upper bound for the error of the algorithm,
which we then specify for different conditions on the variability of the quantile function. From these results we

derive the convergence rates for the considered examples and present some numerical results.
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5.1 INTRODUCTION

Often in applications one wishes to recover a functional dependence between different parameters of the underly-
ing distribution based on observations from that distribution. Non-parametric model regression is one common
approach to this problem. Strictly speaking, in regression analysis we are interested in estimating the conditional
expectation of one random variable given another one. Thus, certain moment conditions in regression models are
unavoidable. Moreover, in additive regression, stronger structural conditions on the noise are usually imposed,
for example, normality of errors. However, sometimes it is desirable to minimize the conditions on the moments
(and the form) of the distribution of the noise. If, for example, we only assume that the error at each moment
has a quantile of certain fixed level (for identifiability purposes), then we obtain the so-called quantile regression
model, first introduced into the literature in [2]; see [55] for a nice account on this topic.

The quantile regression model is quite important in fields such as econometrics, social sciences and ecology.
There, one often studies response variables whose relation with its measured predictors is complex. In these
cases the conditional expectation of the response variable might simply be insensitive to these relations and will
provide a poor description of the underlying phenomenon. Error bounds on certain regression estimates can be
viewed as crude quantile regressions [92] but these quantiles can be estimated directly. By estimating conditional
quantiles of different levels, rather than the conditional mean we get a much more comprehensive and robust
description of the data. This seems to be of particular relevance in applications, for example in ecology, where
data often displays heterogeneous variances [20].

In this chapter we treat the problem of recovering a quantile regression function in an on-line fashion. Precisely,
suppose that at each time point k € N we observe a random variable X} and the problem is to recover its quantile
of level ay € (0,1) by using observations available at this time moment. An important complicating factor of our
framework is that we do not assume the traditional independence of the observations. In fact, the observations
can be arbitrarily dependent so that by the time moment k we have observed X = (X, ..., Xi) and we would
like to recover the conditional a-quantile of Xy, given X.

Moreover, it is desirable to design an algorithm such that the estimate of the quantile at the current time
moment is based on the estimate of the quantile at the previous time moment and a small correction based on the
current observation. This allows us to bypass the need to use optimization algorithms to recuperate the quantile
regression function which is standard in quantile regression and brings us to the area of stochastic approximation
algorithms. The idea of stochastic approximation algorithm was first proposed by [76] and since then a huge
amount of literature has appeared on this topic (cf. Chapter 6). These algorithms run in parallel with the collection
of data and are driven by a gain function. The gain, when properly rescaled by a so-called step size, can be used to
improve any approximation for a quantity of interest (a conditional quantile in our case). Sequential application

of this procedure results in a recursive, tracking algorithm.

5.2 PRELIMINARIES

Suppose that at each time k € N we observe a random variable X so that by a time moment n we have n
observations Xj, ..., X,. Denote Xy = (X, ..., Xx), k € N, with the convention that X, is an empty vector and
let X represent the (common) support of each observation. Hereafter, vectors are represented by bold symbols

and can be upper or lowercase letters.
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For some known fixed values ay € (0,1), k € N, let 6; = Ox(xx_1) = Ox(xk_1, @), the ag-quantile of the

conditional distribution of X given X;_; = X;_; = (x1,...,Xk_1):
Ok (x_1) =inf {6 : P(Xi < OXpy = X41) > o}

Let Fi(xk|xx_1) denote the (unknown) conditional distribution function of Xy — 0 (xx_;) given X;_; = xx_;.
Thus, F(0|xx_;) = ay, k € N.

Our goal is, loosely speaking, to track down the conditional quantile 6 based on the information available to
us at time k. More precisely, at each time moment k € N we want to estimate 0, (Xy_;) by using the observations
X = (X1,..., X)) available at that moment. Ideally, we would like our procedure to approach the evolving
conditional quantile 6y (Xy_;) as time progresses. If, however, this is impossible, then the procedure should at
least stay in proximity of 6y (Xj_1), the evolving conditional quantile, as close as possible. Until now we have not
imposed any assumption on the observations Xj, X3, . .., these are arbitrarily distributed and have an arbitrary
dependence structure. Clearly, the stated problem in its full generality has no feasible solution. Thus, in order
to obtain some non-void results, we need to impose some assumptions on the conditional distributions of Xy
(given Xj_; = X4_1), k € N, while at the same time trying to keep these conditions as weak as possible.

Now we are ready to introduce the conditions on the conditional distributions Fj (xy|xx_;) which we are

going to use in the derivation of the main result.

(Cl) For some positive b, B, §, the following inequality holds for any ¢ € [-4, §]:

ble| < in£k71|Fk(£|Xk—1)_0‘k|§ sup  |Fi(e[xg-1) — ax| < Ble, keN.

Xj—1€ Xj_jeX k-1
(C2) The conditional quantiles 0y (Xy_;) take values in some compact set ® so that

sup sup |Ok(x41)| < sup|f] = Ce,
keN x;_ ex k-1 0c®

for some (known) constant Cg.

Condition (C1) is fulfilled if, for example, the conditional distributions Fi (xk|x_;), are absolutely continuous

with the conditional densities fi (xx[xx_;) such that for some positive b, B, 6,

0<b< infk_lfk(xk|xk_1) < sup  fi(xplxgo) <B, keN.

Xj_1€X xj_jeXx k-1

for almost all (with respect to the Lebesgue measure) x; € [-6, 5] n X.

If X is a discrete set then condition (Cl) is inadequate. We require instead

(D1) For positive constants ¢ < 1< §, the following inequality holds for any x € [-8, 8] N X with X = Z (wl.g.):

0<c< inf  pr(xplxe_1) < sup  pr(ok|xk_1), kel
Xk*IEXk71 Xk,IGXk71

Remark 5.1 Notice that, even under the above conditions, we deal with a rather general framework: the obser-
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vations can be dependent and not identically (marginally) distributed. Besides, our problem is stated in the robust
setting, in the sense that we do not assume anything about the moments of the observations Xy — they simply may

not exist.

Conditions (Cl1), (D1) and (C2) are rather natural for the most important particular case of independent
observations Xy, k € N. In this case the conditional a-quantiles 8, become unconditional (8 does not depend
on X;) and bounded uniformly in k according to condition (C2). The observations can then be expressed in
the form Xj = 0y + &, k € N, with independent noises &. Condition (Cl) means that the noises & have zero
a-quantiles respectively and their probability distributions behave regularly in the neighborhood of zero in
the sense that they degenerate neither into zero nor into delta-function. Alternatively, when X is discrete, (D1)

requires the distribution function of the noises to jump by at least ¢ close to zero.

Conditions (Cl1), (D1) and (C2) do not seem too restrictive for another important case of Markov model

observations: in this case the conditional density f; depends only on two arguments xy, xj_;.

Introduce the indicator function 1{ A} of a set A, the function sign(x) = x/|x| for x # 0 and sign(0) =1, and
the function
Se(usv) = Sp(u, v, o) = —u—-v<0} +¢/2, keN. (5.1)

where c is the constant from condition (D1) if X is discrete and ¢ = 0 otherwise.

Let {yx, k € N} be a nonnegative sequence bounded by some constant I':
0<yr<T, keN. (5.2)
Next, for some positive, fixed « introduce the constant
C=Ce+T(1+c/2) +x, (5.3)

where constants Cg and I' are from conditions (C2) and (5.2), respectively, and as before, ¢ is the constant from

condition (D1) if X is discrete and ¢ = 0, otherwise.

We are now ready to define our algorithm for tracking a conditional quantile:
Ox = Hé(ék—l + YSk(Xis ékfl))) 0y €O, keN, (5.4)

where 6 € © some initial value', the sequence of step sizes {y, k € N} satisfies the restriction (5.2), the constant
C is defined by (5.3) and ITx = [x]¢, = x 1{|x| < d} + d sign(x) 1{|x| > d} is the projection operator on the
interval [-d, d].

If X is a discrete set, then we define ITxx, the projection operator on X, as ILyx = argmin ey |x — y|. We

then use a modified version of (5.4),

ék = Hc'(ék—l + Ykgk(Xk: HXékfl)): é() €0, keN. (5.5)

"We can take for example éo =0.
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By definition, the sequence {0y, k € N} is trivially bounded :
0] <C, keN. (5.6)
It is easy to see that the algorithm (5.4) can be rewritten as
0 = Oy + yieSk(Xi 0421), B0 €®, keN, (5.7)
where the function S (u,v) (which we call shift function) is defined as follows:
Se(u,v) = Sp(u,v) + Sp(u,v),  keN. (5.8)
Here Sy (u,v) is given by (5.1) and, for all k € N,
Se(u,v) = y,;l[(-? sign (v + yeSk(u, v)) -(v+ ykék(u,v))] ]l{|v +yiSe(u,v)| > C} (5.9)

if yj # 0, and without loss of generality we put Si(u, v) = 0 if y; = 0. In (5.9), the constant C is defined by (5.3)
and the sequence (yy, k € N) satisfies the restriction (5.2).

5.3 MAIN RESULTS

In this section we formulate the main result of the chapter. We start with two technical lemmas which we shall

need in the proof of the main theorem. For the sake of brevity, denote 6; = 0 (Xy_;).

Lemma 5.1 Let the functions S (u,v), k € N, be defined by (5.9) and constant C = Ce + T(1+¢/2) + x by (5.3),
where ¢ is as in (DI) if X is discrete and ¢ = 0 otherwise. Then |S(u, v)| < 1+ ¢/2, uniformly over u € R and |v| < C.
Also, the relations

Se(u,v) = =GO, u,v) (v = 0;), keN, (5.10)

hold for some functions G (0x, u,v) such that 0 < Gy(6y, u,v) < k™, uniformly over u € R, 0 € ® and |v| < C.

Lemma 5.2 Let the functions Sx(u,v), k € N, be defined by (5.8). Let ¢ be as in condition (D2) for discrete X and
¢ = 0 for continuous X. Then |Si(u,v)| < 2+ ¢, k € N, uniformly over u € R and |v| < C. Moreover, if conditions
(C1), (C2) are fulfilled, then

E[Sk(Xk,V)|Xk,1] = —Gk(Gk,v)(v - 6k)> ke N, (5.11)

for some functions Gi(0x,v) = Gx(6y,v,Xg_1) such that 0 < h < Gr(6y,v) < H with probability 1, uniformly
over 0y € ©® and |v| < C (the constants h, H depend on 8, Cg, C and «; they also depend on either b and B for

continuous X or on c for discrete X.)

Remark 5.2 An informal interpretation of Lemma 5.2 is as follows. Firstly, the shift function Sy (Xy,v) gives the
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“right average direction” from v towards the conditional quantile value 0. Secondly, the ‘average length” of the shift

Sk (Xx, v) is a controlled multiple of the distance between v and the conditional quantile value 0.
The next theorem is the main result of this chapter.

Theorem 5.1 (Error bound)

Let conditions (C1), (C2) be satisfied, let the estimator 0y be defined by (5.4) with step sizes {yy, k € N} satisfying
(5.2) and let the constants h and H be from Lemma 5.2. Define §;, = ék — 0 and AOy = 0y — 0,1, k € N (define
0o = 0). Then for any p > 1, any n, ng € N such that ny < n and yH <1 for all ny < k < n, the following relation
holds

n n p/2 n p
E|6n|psclexp(—phz yk)+C2( Z yi) +C3E( max ‘Qk—GnO‘P)+C4E( Z yk|A9k|) (5.12)

k=ng+1 k=no+1 no+i<ks<n k=no+1

for some positive Cy, Cy, C3 and Cy, constants which depend only on p, Ce, C and H.
The proofs of the theorem and the lemma are deferred to the last section.

Remark 5.3 The upper bound (5.31) depends on the levels ay, k € N via the constants Cg, h and H. The closer ay,
is to one (resp. zero), the bigger (resp. smaller) the quantile’s value 8y, and therefore the constant Ce becomes bigger.
There is too little probability mass in a neighborhood of an extreme quantile, so condition (Cl) is more difficult to
fulfill as . gets closer to 1 (or zero). This makes constants § and b smaller, which in turn makes constant h smaller
and constant H bigger. These changes in Cg, h and H in turn lead to an increase of the final constants Cy, C;, Cs
and Cy in inequality (5.31). As for the dependence on p, as it appears from the proof of the theorem, the bigger p,
the bigger the constants Cy, C,, Cs and Cy.

Remark 5.4 In the relation (5.38) below one can derive an alternative bound

k
> yiMi(Xi,0i,0i-)

i:?’l0+1

n
£ Y eMag,

i:?’lo +1

max |Ri| < max
no+1<k<n no+l<k<n

which would lead to an alternative final statement for the theorem:

n n p/2 n p
]E|8n|p£C1exp(—ph Z yk)+C2( Z yi) +C5IE( Z e_hy"|A0k|).

k=ng+1 k=ngp+1 k=ng+1

Remark 5.5 By analyzing the proof of the theorem, one can see that the particular form of the shift function
Sk(u,v) is not important, it is the property (5.26) for the quantity E[S(Xy,v)|Xk-1] and the fact that the 01,
k € N, are bounded that are really needed in the proof. Therefore, any shift function Sy(Xy,v) for which Lemma
5.2 holds and 0y are bounded will do the job. For example, Lemma 5.2 (and therefore Theorem 5.1) holds for the
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following shift function Si(u,v):
Si(u,v) = Si(u,v) 1{y| < Co + 8} —vI{|v| > Co + 8}, keN. (5.13)

Thus, one can use the shift function (5.13) in the algorithm (5.7). Actually, we can establish Lemma 5.2 for the shift
function (5.13) uniformly over all v € R (instead of just uniformly over [v| < C).

The result of the theorem - inequality (5.31) - is given in a non-asymptotic form as an explicit upper bound
for the error of the algorithm and is in essence determined by the choice of a time moment #n, and the step sizes
Vi kK = 1o, ..., 1.

If we analyze the right hand side of (5.31), then we see that the second term is small if the sum »}_ ., Yi
is small. This will hold if, for example, the series ¥y ; is convergent and ny is sufficiently large. On the other
hand, in order to make the first term small the sum }}'_ ., y« should be sufficiently large, which will hold if, for
example, the series Y. ;. Yk diverges and the difference between ny and # is large enough. These are the classical
conditions for the step sizes of the Robbins-Monro type algorithms and well known in the literature. Intuitively,
if the sum Y., ., y7 is small, then the algorithm can “approach” 6, arbitrarily closely, and if the sum Yhengs1 Yk
is big, then algorithm can “reach” any point 0 € ®. The value n¢ and the difference between the time moments
ng and n represent a “burn-in” time for the algorithm. Recall that the algorithm starts from an arbitrary point
0y and therefore some time is needed for the algorithm to get adjusted and to start to really track the drifting
quantile parameter 0,,.

The third and the forth terms in the right hand side of (5.31) can be arbitrarily large in general if we do not
impose conditions that regulate the evolution of the parameter 0y, k € N. We discuss this problem in more detail
in the next section, where we also consider examples of such conditions. The basic idea is as follows: the less the

conditional quantile is allowed to vary, the better the tracking algorithm performs.

5.4 APPLICATIONS OF THE MAIN RESULT

In this section we consider some examples of situations when we can apply Theorem 5.1. From now on, by ¢ and
C we denote universal constants which can be different in different expressions.

First of all note that we can write X; = 0, (Xy_;) + 7% (X ), k € N, for #; such that P(n,(Xx) < 0|Xk_1) = ag.
Conditions (C1) and (C2) are satisfied if, for example, it is possible to write ;. (X ) = o (X ) &k i€,

Xi = 0k(Xg) + o (Xp) &k, kN,
and if the following requirements hold: for some constants vy, v

0<vg < inf ox(xg) < sup ox(xx) <vi<oo, kel (5.14)
xRk xRk

the noise terms & are independent with densities f;(x), respectively, such that, for some constants 8, a and A,

0<acx< li?%fk(x) <sup fr(x) <A, kel
x|<

|x|<8
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and
sup |0k(xx-1)| < Co, keN.

x;_ €RF-1
These conditions become somewhat unnatural as k increases - the functions oy, and ) have arguments of growing
dimensions. However, the above conditions are reasonable if the observations { Xy, k € N} form a Markov chain
of order, say, p:

Xi = O (Xi-ts e+ o5 Xpop) + 0k (Xpops oo, Xi—p) &k k€N,

with some initial Xo, X1, ..., Xi—p.

Of course, it is impossible to provide any bound for the quality of the recursive algorithm by using Theorem
5.1 if nothing is known about the behavior of the increments A0 = 0, — 0;_;, k € N.

5.4.1 CONSTANT QUANTILE

Apart from conditions (C1) and (C2), assume now the strong model condition 6;(Xy_;) = 609, almost surely,
k € N, for some unknown constant quantile 0y, (i.e., Af; = 0, k € N). In essence, we have a parametric setup.
Clearly, in this case the third and the forth terms in the right hand side of (5.31) vanish. Take y; = (C, logk)/k
and ng = |gn| for some g € (0,1), where | a| denotes a whole part of the number a € R. Let ng > 2, which is

satisfied if n > 2/q = N,. Then since for sufficiently large C, and n > N,

1 "1 _logn
> yk>Cylogng >, —> ,
k=ng+1 k=ngp+1 k 2h

the first term in the right hand side of (5.31) is bounded as follows:

Cyexp ( - ph Z yk) <Cn P, (5.15)

k=no+1
Using Y7, 11 yi < c(logn)*n™", we bound the second term:
n p/2
Cz( > yi) < C(rfl/2 log n)p, (5.16)
k:n0+1

which leads to the parametric (up to a logarithmic term) convergence rate

p
maxE( v |8n|) <c. (5.17)

n>N, \logn

Interestingly, we cannot get rid of the log factor in the above statement. In some sense, one can see this as “payment”
for recursiveness and robustness. Indeed, the bound (5.17) holds for any moment p > 1, whereas no moment

conditions were assumed for the original observations { Xj, k € N}.

Besides, from inequality (5.17) one can derive the convergence §,, — 6 with probability 1 with the rate
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n~(/2-¢) for any & > 0. Indeed, by using (5.17) for p > ¢ ' and the Markov inequality, we obtain that for any ¢ > 0

Nk

nbl2-pe p o0 p
E|6 | CZ M (5.18)
n

P(nl/z_s\én - 6| >c) < i

1

B
Il

and the convergence 6, — 6 as n — oo with probability 1 with the rate n~(/2-) follows by the Borel-Cantelli

Lemma.

5.4.2 POLYNOMIALLY DECREASING QUANTILE INCREMENTS

Suppose now that the increments of the conditional quantile A8, = 6, — 0;_;, k € N, satisfy the following
restrictions
E|A6 P <pP, keN, (5.19)

for some p > 1and some positive sequence py decreasing to zero. One can interpret this condition as a requirement
for the p-th moment of the oscillations A8y to “slow down” over time. Throughout this section, assume the

polynomial restriction py = cpk_'g for some c, >0, 8 > 0.

Consider first the case § > 3/2. It turns out that in this case the oscillations of the sequence 8 slow down so
quickly that an appropriately chosen algorithm step of leads to the same quality as if function 6(¢) were constant.
Indeed, take y; and ng to be the same as in the case of constant quantile (see Section 5.4.1). Then the first and the

second terms of (5.31) can be bounded in the same way as in (5.15) and (5.16), whereas the third and the forth
p
terms are bounded by a multiple of E( Y kenos1 |A0k|) . By the Holder inequality, we evaluate

n

p - n
E( > |A0k|) <(n-np)P™" > E|AGP < C(n - n,)Pph,
k:n0+1 k:n()+1 (5.20)

<c((n- no)naﬂ)p <Cn~BDP < cpPl?,

which leads to the same bound as (5.17) with another constant c.

Now consider the case 0 < f < 3/2. Let y, = C,(log k)2 k=2P13 ng = n — n?PP(logn)?*>. By using the
elementary inequality (1+ x)® <1+ ax for 0 < a < 1and x > -1, we obtain that for sufficiently large #n (i.e.,
n > N1 = Ni(B)) and sufficiently large constant C,

" " " dx
13 13
2. iz Gy(logno) Z k2!3/3 2 Cy(logm) f ETIE

k:n0+1

_ Cy(logny) 13 (nl—zﬁ/S _ n1—2ﬁ/3(1 _ nzﬁ/3—1(logn)2/3)1—213/3)

1-2p/3
Cy(logng)"? 1-28/3 _ , 1-28/3 28/3-1 2/3
Zyl(_iﬁ/;(n 815 =281 = 28151 (log )12 (1~ 263)) )

Cy(log no)?(logn)** > l(;%.

This yields the same bound for the first term of the right-hand side of the inequality (5.31), similar to (5.15): for
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n > N; and sufficiently large constant C,

Cexp (—ph > yk) <Cin PP,

k=f’lo +1

Let us bound the second term on the right-hand side of inequality (5.31): for n > N, = N(f3)

Cz( Zn: yi)p/2 < C((log n)2/3n54ﬁ/3(n - no))p/2 < ¢((log n)2/3n‘ﬁ/3)P.

k=ng+1

For sufficiently large n (i.e., n > N3 = N3(f3)) the third and the fourth terms on the right-hand side of inequality
(5.31) are bounded similarly to (5.20) by the expression

5(c 3 0] < tn-mn”) < cltogmu s’

k=no+1

Finally we obtain thatfor 0 < 8 < 3/2 and sufficiently large constant C, in the algorithm step y; = C,(log k)21

g™ )
B ——— <
™ o) <<

where Ng = max(Nj, N2, N3) is the burn-in period of the algorithm.
Remark 5.6 If we choose y; = Cy(logk)“ k™ and ng = n — n*(logn)®, for some 0 < a < 1, a1, &, > 0 and

a1+ ap > lin case 0 < f < 3/2, then we get the following bound of the convergence rate: for sufficiently large n and

sufficiently large constant C,
—min(B-a, @/2 2)\?
E|6n|p < C(}’l min(f-a, o/ )(logn)max(az,mﬂxz/ ) )
Thus , the choice a = 2f3/3, a1 = 1/3, ay = 2/3 is optimal in the sense of the minimum of the right-hand side of the

above inequality.

Remark 5.7 Much in the same way as for (5.18), we can establish that for any & > 0, lim,,_, oo nP/37¢[8,,| = 0 with
probability 1.

Finally, consider the case f8 = 0, i.e., we assume the following weak requirement: E|A0,|? < ¢, k € N, for some
uniform constant c. Take n — ng = N, y; = y for some N € N, y > 0. Theorem 5.1 then implies that
max E|5,|” < Cie "N 4 C,NP/*yP 4+ C3NPc + C4NPyPc = E.
nx

We thus have that the algorithm will track down the conditional quantile in the proximity of size E, which we

can try to minimize by choosing appropriate constants N and .
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5.4.3 LIPSCHITZ QUANTILE: ASYMPTOTICS IN FREQUENCY OF OBSERVATIONS

Consider the model
Xk=9(k/n)+(fk(Xk)£k, k=12,...,n,

where the o’s satisfy (5.14) and 0(¢), ¢ € [0,1] is an unknown Lipschitz function, i.e., 8(-) € L(L,8) = {g(*) :
lg(t) — g(t2)] < LIty = )P, t1,t2 € [0,1]}, for some 0 < B < 1and L > 0. The parameter n has a meaning of
frequency of the observations, the number of observations per time unit. This setting is typical for the problem
of nonparametric regression estimation. The nonparametric median estimation problem has been studied in [13]
and [14]) for such an asymptotic regime. Although this asymptotic regime is not really practical for recursive
procedures - the step size is constant and depends on the observation frequency #, and so if n changes, the whole
model changes — we derive the asymptotic results for this setting as consequences of our non-asymptotic general
Theorem 5.1.

Let y; = C,(log n) CB-D/CR+1) =2B/2B+1) for k = 1,.. ., n, and define
ko = ko(n) = k - (logn)z/(2ﬁ+1)n2ﬁ/(2ﬁ+1),

for all k > K,, = (log n)%/?F+1) 28/ CB+1) For sufficiently large Cy

k
S yi = Cy(log n) 2BDICED ,=2B/CBD (k _ ko) > C,logn > lozgh "
i:k0+1

which leads to )
exp(—ph > yi) <cen P2,

i=k0 +1

Now we have

k p/2 w1 o 2 5
( > y?) sc((logn)mn*m(k—ko)l/z)”:c((1ogn)mn*m)”.

i=ko+1

By the Lipschitz property of the function 6(t), with 6; = 8(i/n),

max [0; - 0[P <c
ko+1<i<k

‘k —nko ‘ﬁp < C((log n)%rf%)p.

Since |A6;] < L|Z - %1‘[5 <cn b,

k p
( 2 Yi|A9i|) < e((k=ko)yinP)" < C(nFlogn)”.

i=k0+1
Combining the last four inequalities with the bound (5.31), we derive that for sufficiently large C,

28 B NP
sup maxE|6k\pSC((logn)2ﬁ“n 2/3“) . (5.21)
0(-)eL(Lp) K=K
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In the derivation of this inequality, we used the uniformity of all the bounds over k > K, = (log n)* (?8+1) 5,28/ (2p+1)
and over the Lipschitz functional class 8(-) € L(L, ). The sequence K, has a meaning of “burn-in” period.
Notice that the resulting convergence rate coincides (up to a logarithmic factor) with the minimax rate over

the Lipschitz class £(L, 8) in the problem of minimax regression function estimation.

5.5 NUMERICAL EXAMPLE

We now treat a small numerical example to illustrate our results. This example can be found in [92]. For t(") =
(l/n -1,3/n-1,...,1-3/n,1-1/n) we make observations from

X,'=f(l’,')+0(ti)£,‘, i=1,...,n,

where the &;’s are independent standard normal random variables. The function f and standard deviation of the
noise o are taken, for t € [-1,1], as

sin(t)

f() = P o(t) =0lexp(l-1t).

As explained in the previous section, we technically have a different model for each value of n and the bound given
in Theorem 5.1 becomes a statement about asymptotics in the sampling frequency n. At time k, for « € (0,1),
we are interested in estimating the a-th quantile of Xy, call it 0y, based on the data X = (Xj,..., X). Itis

straightforward to see that we can write 6y = 0, ; = 9,(#;), where

9.(t) = f(t) +o ()@ Na), te[-1,1],

where @ is the cumulative distribution function of a standard normal random variable from where we assume
that the quantile function 9, is in £;([-1,1]).

In our numerical study we took y; = C,(log(n)/n?)/? for C, = 2.5, n € {100, 250,500,1000,10000} and
a €{0.1, 0.25, 0.5, 0.75, 0.9}. Our tracking sequence is then defined as

ék ZHC(ék_1+yk((X—]l{Xk < ék—l}))’ k=1,...,n, (5.22)

as defined in (5.4) where we took 8y = 2 and C = 5. In Figure 5.5.1 we show the functions 6,(t) which are
obtained by linearly interpolating the sequence (5.22), for each #n and each «. (Note that to get the tracking se-

quence only requires knowledge of the value of the indicators 1{ X, < 6_; } and not of the actual observations Xj.)
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Figure 5.5.1: Results of the tracking algorithm. All pictures contain the data (blue dots), the true quantile function for the
chosen values of « (black lines), and the respective tracking sequences (tones of red). To each picture corresponds a specific
sample size. On the first row we compare, for n = 100, the raw tracking sequence (left) with a smoothed version of it (right).
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The burn-in period of the algorithm is quite noticeable in the pictures in Figure 5.5.1 as is the improvement in
the quality of the approximations as 7 increases. The constant C, has to be picked large enough so as not to hinder
the capability of the tracking sequence to “catch up” with the signal. Picking C, too large will however cause
the tracking sequence to make large jumps (since yy is larger for small #). This can be partially compensated
for, by smoothing out the resulting tracking sequence via, say, a moving window average, i.e., replacing each
ék by the mean of élv(k,w), ey ék, ey én/\(ker) for some w € N. (For the top right picture in Figure 5.5.1 we
took w = | 2.54'/3|.) This somewhat improves the results although its clear that the approximation of the more
extreme quantiles (0.1 and 0.9) is quite crude for low values of n. We will revisit this example in the next chapter,

in Section 6.7.1.

5.6 PROOFsS

In this section we omit mentioning k € N as we agree that all the relations where the index k is involved hold
for all k € N. We will also agree that the constant c is the constant from condition (D1) if X is discrete and ¢ = 0

otherwise.

Lemma 5.1 Let the functions S (u, v), k € N, be defined by (5.9) and constant C = Ce + T'(1+ ¢/2) + « by (5.3),
where ¢ is as in (D1) if X is discrete and ¢ = 0 otherwise. Then |S.(u, v)| < 1+ ¢/2, uniformly over u € R and [v| < C.
Also, the relations

Se(u,v) = =GO, u,v)(v = 0;), keN, (5.23)

hold for some functions Gy (0, u,v) such that 0 < G0y, u,v) < k7Y, uniformly over u € R, 0 € ® and |v| < C.

Proof: For u € R, 0 € @, |v| < C put

Sk(u,v)

Gi(O> 1, v) = - —y

if v # 0. (5.24)
and Gy (0, u, 0;) = 0. Let us show that functions Gy (6, u, v) satisfy the assertions of the lemma. First of all,
note that the representation (5.23) holds true. In view of (5.24), it is trivial if v # 0. The representation (5.23)
holds true also for v = 0 since Gy (8, u, 0x) = 0 by the definition and Sy (u, 0;) = 0 for all u € R and 6 € @, as
0k + ySk(u, 0;)| < Co + T(1+¢/2) < C.

Now we need to prove that 0 < Gi(0;,u,v) < «' uniformly over u € R, 6; € ® and |v| < C. Since
Gr(0x, u,0;) = 0, we consider only the case v # 0. If yr = 0 or |v + Sk (u,v)| < C, then Sg(u,v) = 0 so
that, according to (5.24), G (0, u,v) = 0 and the lemma is proved also for these cases.

It remains to consider the case when v # 0, yx > 0 and |v + y;Sg(u,v)| > C. If we have additionally that
[v| < C,then C < |[v+y,Si(u, v)| < [v]+|ykSk(u,v)| < C+yx(1+¢/2). Then 0 <y (|v + xSk (u,v)| - C) <1+¢/2,

or equivalently
0 <y v + yiSk(u, v) — Csign(v + ypSi(u,v))| <1+ ¢/2, ueR, |v|<C,

which implies in passing the first assertion of the lemma: |S (4, v)| < 1+ ¢/2, u € R, |v| < C. Obviously, v +
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YeSk (1, v) is of the same sign as v since |Si (1, v)| < 1+¢/2and yj < T, whereas C = Co+T'(1+¢/2)+x > I'(1+¢/2).
This implies that v + y;. Sy (4, v) — C sign(v + yx Sk (u, v)) is also of the same sign as v because |[v + y;Si (u,v)| > C.
Now, from |v| > |[v + peSi (e, v)| = |yeSk (4, v)| = C = T(1+ ¢/2) = Cg + k, it follows that v — 0 is of the same
sign as v for all 6 € ®. Moreover, |[v — 0x| > |[v| — |0i| > Co + k¥ — Co = k. Thus we showed that if u € R, 6 € ©,
[v| < C and v # 6, then

2 peSiun ) - Cign(v + yiSi ()l + pidi(ae )] > €}

525
=0, (5.25)

IN
x|

In view of (5.9) and (5.24), the expression in the middle of the relation (5.25) is nothing else but Gie(0,u,v)
for v # 0. By using Gy (0, u, 0;) = 0 and the relation (5.25), we obtain the second assertion of the lemma:

0<Gr(Opu,v)<—, ueR, 6,€0, |v|<C.

x|~

Lemma 5.2 Let the functions S (u,v), k € N, be defined by (5.8). Let ¢ be as in condition (D2) for discrete X and
¢ = 0 for continuous X. Then |S;(u,v)| < 2 + ¢, k € N, uniformly over u € R and |v| < C. Moreover, if conditions
(C1), (C2) are fulfilled, then

E[Sk(Xk,V)‘Xk_l] = —Gk(Gk,v)(v - Gk), keN, (5.26)

for some functions G (0, v) = Gg(6y,v,Xg_1) such that 0 < h < Gy (6, v) < H with probability 1, uniformly
over 0y € © and |v| < C (the constants h, H depend on 8, Cg, C and «; they also depend on either b and B for
continuous X or on c for discrete X.)

Proof: The definition (5.1) implies the obvious bound |S (u,v)| < 1+ ¢/2. By Lemma 5.1, [S (4, v)| < 1+ ¢/2
uniformly in u € R and |v| < C. Therefore |S;(u, v)| < Sk (4, v)| + Sk (4, v)| < 2 + ¢ uniformly in u € R and
[v| < C, which proves the first assertion of the lemma.

For 0, € ® and |v| < C define Gy (6, 0;) = “TB, and for v # 6 define

E[S.(Xp, v) X, E[Si(Xe, ) Xioi]  E[SL(Xe, v)[ X
Gk(ek,v):— [k( kV)| kl]:_ [k( kV)| kl]_ [k( kV)| kl]. (5.27)
V—Hk V—ek v—Hk

Representation (5.26) holds immediately for v # 6. In case v = 0y, Si(u,0;) = 0 forall u € R and 6, € ®

since [0 + yiSk (1, 0x)| < C, and B[ S (Xie» 0k) Xt | = otk = (X — 0x(Xrr) < 0/Xper) = ot — Fi(0]Xpey) = 0

by the definition of the conditional distribution function Fy. Therefore, in case v = 6; € ©, we obtain that

E[Sk(Xk, Bk)|Xk,1] = E[Sk(Xk, Bk)|Xk,1] + E[Sk(Xk, Bk)|Xk,1] = 0 and the relation (5.26) holds again. It

remains to prove that Gy (0, v) satisfies the inequality 0 < & < G;(0y,v) < H uniformly over 0; € ® and |v| < C.
For 0 € O, |v| < C and v # 0, introduce the function

E[Sk(xbv)lxk—l] 3 Fk(v - 6k|Xk,1) -y — C/Z

Gr(04,v) = —
k(Ok,v) p—y s

(5.28)
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Since the conditional distribution function Fy has zero quantile of level a € (0,1), function G (6, v) is always

non-negative. In view of (C1) and (D1), we have that for 0 < |v — 0| < 8, almost surely,

bgGk(Gk,v) <B and SG_k(ek,V)SZ,

NSRS

for respectively X a continuous set and for A" a discrete set.
Suppose now that |[v — 6| > 8. Then obviously G (6, v) < (1+¢/2)87L. On the other hand, as |0;| < Cg and
[v| < C,|v =0 < [v| +|0k| < C + Cg, which in turn implies by (C1) that

min (Fi (8[X41) — ax — ¢/2, ¢/2 + ag — Fi(=08|X;1))
v — 64l

Gk (Or>v) > .
The last display is lower-bounded, almost surely, by b3/(C + Cg) if X is a continuous set and lower-bounded,
almost surely, by c¢(8 —1/2)/(C + Cg) if X is discrete. Thus, for any 6y € @, |[v| < C, v # 0, we have established
that

min (b, b8(C + Co)™") < G(6y,v) < max (B, ') (5.29)

almost surely, for data supported on a continuous set X' and
min (¢/2, ¢(8 —1/2)(C + Co)™") < Gy(6y,v) < max (2, (1+ c/2)671) (5.30)

almost surely, for discrete X, with in both cases the functions Gy (6, v) defined by (5.28).
Recall that we defined G (6, 0y) = IHTB, Ok € O, so that b < G (0, 0x) < B. Using this fact, relations (5.27),
(5.28), (5.29) and Lemma 5.1, we obtain for X" continuous that,

h =min| b, _h8 < Gi(0k,v) < max B+l,l+l -H
C+C® K

d «

and for discrete X, using (5.27), (5.28), (5.30) and Lemma 5.1,

h = min E,M < Gi(6g,v) < max 2+1,M+l =H
2" C+Ceg K é K

both almost surely, uniformly in ;. € ©, |v| < C. This establishes (5.26) and the lemma is proved. O

Theorem 5.1

Let conditions (CI), (C2) be satisfied, let the estimator @) be defined by (5.4) with step sizes {y, k € N} satisfying
(5.2) and let the constants h and H be from Lemma 5.2. Define &y = ék — O and Ay = 0y — Oy_1, k € N (define
0o = 0). Then for any p > 1, any n, ng € N such that ny < n and yH <1 for all ng < k < n, the following relation
holds

n n p/2 n p
E|8ﬂ|PSC1€Xp(—phZ Yk)+c2( Z yi) +C3E( max |9k_6n0|p)+C4E( Z yk|A6k|) (5.31)

k:n0+1 k:n0+1 n0+1SkSn k=n0+1

for some positive Cy, Cy, C; and Cy, constants which depend only on p, Cg, C and H.
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Proof: In this proof, we impose the convention that the summation and the product over an empty set of indices
is zero and one respectively. In particular, >/, b; = 0 and [T}, ,; b; = 1. Recall the notations &y = 0 — O

A6 = 0, — 0_;, and introduce further

8(06v) = E[Sk(Xio ) Xpt ], Mi(Xi, 05 v) = Sk (X v) = gk(05ov).

By Lemma 5.2, gi(6y, ék—l) = -Gy (6, ék—l)(ék—l — 0y ) for some functions G (0, v) such that almost surely
0 < h < Gi(6k,v) < H, uniformly over 6 € ® and |v| < C. Then

(0 0x1) = ~Gr(Bk, B11) (Bt — k) = ~Gi(Ok, 1)1 + G (1, 6x1) A6
and the algorithm (5.7) can thus be written in the following form:

Ok = Ot + Yk (My (X 0k 05 1) + g1(0k, 05 1)) — A6,
= 8k (1- ykGi (85 Oxr) ) + PiMi(Xis 0 1) — (1 - 1 G (05 1) ) AO,
= 8k—1gk + Tk keN. (5.32)

Here and from now on we use the following notations:

k
Q= 1= ykG(0k, 0k1)s 7k = YieMi( X, Ok, 0k1) = qiAbi,  Ri= ). ri (5.33)

i=i’l0 +1

Now we bound the random variables g, ny < k < n defined above by (5.33). According to the conditions of
the theorem, 0 < 1- y;H if ng < k < n and, by Lemma 5.2 and (C2), 0 < h < Gy (6, 0r_1) < H almost surely,

uniformly over 0y € ®. Then
0<1—yH < qr =1-yeGr(Bk 0ky) <1—ypih < e 7 <1, np <k <n, (5.34)

almost surely. Here we also used the elementary inequality 1 — x < e™*.

By iterating the relation (5.32) from # up to ng, 0 < ng < 1, and by applying the Abel transformation for series,

6n:6n0 H qk + Z Tk qu

k=ng+1 k=no+1  j=k+1
n n-1 n
=0n [ ax+Rudn+ D Rilqea-1) [] a5 (5.35)
k=ng+1 k=ng+1 j=k+1

Moreover, note that

n-1 n

ni (1= qk1) H ai= % (I 4- H 4j) =1- H aj- (5.36)

k=no+1 j=k+2 k=no+1 = j=k+2 j=k+1 j=no+2
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From relations (5.35), (5.36) and (5.34) it follows that

n

[0l < 10w TT (1-yxh)+2 max |Ry. (5.37)
no+1<

k=ng+1 I<k<n

By using (5.33) and (5.34), we bound the term max,, +1<k<y |Rk|:

max |Ry| < max

k
> )’iMi(Xi:Giyei—l)|

no+1<k<n no+1<k<n i=ng+1
k n
+ max | > AGj|+H ) yilA6, (5.38)
no+lsksn i=ng+1 i=np+1

Condition (C2) and (5.6) ensure that the estimation accuracy 6y is always bounded:
16k < |0k +16x| < C + Co, keN.

Taking into account this fact, the inequalities (5.37), (5.38) and again the elementary inequality 1 + x < e, x € R,

we conclude that

k
Z )/iMi(Xhei;ei—l)‘

|8n|S(C+C@)exp(—h > yk)+2 max

no+1<k<n

k=ng+1 i=ng+1
) Zn: (5.39)
+2 max AG;| +2H yilA0i|.
no+1<k<n i=ng+1 i=ng+1

Now note that the sequence {ykM ¢ (X 0k, 0 1), k e N } is nothing else but a martingale difference with
respect to the natural filtration {S wkeN }, i.e, &k = 0(Xi,. .., Xy) is the o-algebra generated by the random
variables X, ..., X;. Indeed, by Lemma 5.2 and (5.2) this sequence is bounded almost surely

|y My (X 0 01)] < p(1Sk (KXo Ox1)| + g (Ok Oxa]) < (4+20)T, k€N,

and

E[M(Xgs1 0ki1 01.)[8x] = €6 (01, 01) — €1 (04, 0,) =0, keN.

Therefore the sequence { fo:no a1 ViMi(X;, 05, é,-,l), k>ng+ l} is a martingale with respect to the same filtration.
Since |M;(X;, 0;,0;_1)| < 4+ 2¢ due to Lemma 5.2, we can apply the maximal Burkholder inequality in case p > 1
and the Davis inequality for p =1 (see, for example, [87]) to this martingale: for any p > 1 there exists a constant
B, such that

:IP/2

E[ max

no+1<k<n

k . P n R
> YiMi(Xixei’ei—l)‘ ]SBp]E[ > yiM;(Xi,0:,0,0)
i=i’l0+1 i=n0+1

(5.40)

n p/2
:(4+2c)PBp( > y,z) )

i=ng+1

For p > 1, one can take B, = [(18p5/2/(p - 1)3/2]p; cf. [87].
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Now take the pth power (p > 1) of both sides of the inequality and apply the Holder inequality ( > a,-)P <
mP~1 Y |a,|P for m = 4. Next, take the expectations of the both sides of the resulting inequality and use (5.40)

to derive the statement of the theorem:

E|6n|P§C16XP(—Pth: yk)+Cz( Zn: Y?)p/2+C3E[ max | i A9i|p]+C4E[ i Vf|A9f|]p'

k=rng+1 i=ng+1 no+lsksn 5y i=ng+1






Tracking of Drifting Parameters of a Time Series

I N THIS CHAPTER we present an online algorithm for tracking a multivariate time-varying parameter of a time
series. The algorithm is driven by a gain function. Under assumptions on the gain function, we derive uniform
error bounds on the tracking algorithm in terms of the chosen step size for the algorithm and on the variation of
the parameter of interest. We give examples of a number of different variational setups for the parameter where
our result can be applied, and we also outline how appropriate gain functions can be constructed. We treat in
some detail the tracking of time varying parameters of an AR(d) model as a particular application of our method

and present two small numerical studies.
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6.1 INTRODUCTION

When one analyzes data that arrive sequentially over time, it is important to detect changes in the underlying
model which can then be adjusted accordingly. Estimation or tracking of time-varying parameters in stochastic
systems is therefore of fundamental interest in sequential analysis. Furthermore, it arises in many engineering,
econometric and biomedical applications and has an extensive literature widely scattered in these fields. Moti-
vated by many applications in signal processing, speech recognition, communication systems, neural physiology,
environmental and economic modeling, we consider in this chapter the problem of recursive (online) estimation
of the multivariate time-varying parameter of a time series.

Consider then an X-valued time series (X, k € Ny), Ng = Nu {0}, X ¢ R/, such that at time moment ¢ = 0
the first observation Xy ~ Py, and subsequently at each time moment k € N a new datum X arrives according
to the model X|Xy_; ~ Py, (-|Xj-1) with transition law depending on some multivariate parameter 6 € © ¢ R?
and where X;_; = (Xo, Xy, ..., Xx_; ). Thus, the growing statistical model is, at time ¢ = n, P(") = P(") (@"+1) =
{I1}_ Po, (xk|xk-1) = (00s...,0,) € ©", x, € X"} with the convention that Py, (yo[x_1) = Py, (y0). This
time series formulation represents the most general sequential setting, sequences of independent observations
and Markov chains of arbitrary order are typical examples of models that fit into this framework.

The multivariate parameter 0 € ® ¢ RY, k ¢ N, is time-varying and the goal is to estimate (or to track) its
value based on the data X (and prior information) available by that time moment. Since the data arrives in a
successive manner, conventional methods based on samples of a fixed size are not easy to use. A more appropriate
approach is based on sequential methods, stochastic recursive algorithms, which allow fast updating of parameter
or state estimates at each instant as new data arrive and therefore can be used to perform “online” inference, that
is, during the operation of the system. Stochastic recursive algorithms, also known as stochastic approximation,
take many forms and have numerous applications in the biomedical, socio-economic and engineering sciences,
which highlights the interdisciplinary nature of the subject.

There is a vast literature on stochastic approximation beginning with the seminal papers [76] and [53]. There
is a large variety of techniques in the area of stochastic approximation which have been developed and inspired
by the applications from other fields. We mention here the books [15, 59, 61, 66, 72, 93, 101].

A classical topic in adaptive control concerns the problem of tracking drifting parameters of a linear regression
model, or somewhat equivalently, tracking the best linear fit when the parameters change slowly. This problem
also occurs in communication theory for adaptive equalizers and noise cancellation, etc., where the signal, noise,
and channel properties change with time. Successful stochastic approximation schemes for tracking in the time-
varying case were given in [17, 26, 60, 61] (see further references therein).

In [60] (see also [15, 17]) the authors discuss the important problem of the choice of the step sizes in the
tracking algorithm which we also address in this chapter. In general, the step size of the tracking algorithm is
not necessarily decreasing to zero because of considerations concerning robustness of the actual physical model
in practical online applications and to allow some tracking of the desired parameter as the system changes over
time. In signal processing applications, it is usual to keep the step size bounded away from zero.

Coming back to our model P(") with time-varying parameter () € ©, k € Ny), the problem of tracking a
signal 0} is clearly unfeasible, especially in such general formulation, without some conditions on the model ().
In general, some knowledge about the structure of underlying time seres and some control over the variability

of the parameter 0 over time are needed. Interestingly, in this seemingly very general time series framework,
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we actually do not require the knowledge of the model P("). Instead, all we need is to be able to compute a so-
called gain vector at each time moment k € N, which is a certain (vector) function of the previous estimate of the
parameter 8y, new observation Xy and history X._;. The essential property of such a gain vector is that it, roughly
speaking, “pushes” in the right direction of the current value of true parameter to track. Although the assumption
about the existence of that gain vector seems to be rather strong, we demonstrate on a number of interesting
examples when such an assumption indeed holds. Basically, in case of observations from a Markov chain, if the
form of transition density is known as a function of the underlying parameter and it satisfies certain regularity
assumptions, then the gain vector can always be constructed, for example, as a score function corresponding
to the conditional maximum likelihood method. Under appropriate regularity conditions (the existence of the
conditional Fisher information and L,-differentiability of the conditional log likelihood), such a score function

always has the property of being a gain vector, at least locally.

A gain function, together with a step sequence and new observations from the model, can be used to adjust
the current approximation of the drifting parameter, resulting in a tracking algorithm. To ease the verification of
our assumptions on the gain function, we formulate them in two equivalent forms. Under some assumptions on
the gain vectors, we establish a uniform non-asymptotic bound on the L, error of the resulting tracking algorithm,
in terms of the variation of the drifting parameter. Under the extra assumption that the gain function is bounded,
we can strengthen this result to a uniform bound on the L, error (and then an almost sure bound). These error
bounds constitute our main result and they also guide us in the choice of the step size for the algorithm. Some

extensions are also presented where we allow for approximation terms and approximate gains.

Based on our main result, we specify the appropriate choice for the step sequence in three different variational
setups for the drifting parameter. We treat first the simple case of a constant parameter. Although we are mainly
concerned with tracking time-varying parameters, our algorithm is still of interest in the constant parameter case
since it should result in an algorithm which is both recursive and robust. We also consider a setup where the
parameter is stabilizing. This covers both the case where the parameter is converging and where we sample the
signal with increasing frequency. The third variational setup covers the important case of tracking smooth signals.
This setup is somewhat different in that we make observations with a certain frequency from an underlying
continuous-time process which is indexed by a parameter changing like a Lipschitz function. Our result can then
either be interpreted as a uniform, non-asymptotic result for each fixed sampling frequency or as an asymptotic

statement in the observation frequency.

Examples are also given for different possible gain functions. These fall into two categories: general, score based
gain functions for tracking multidimensional parameters in regular models and specialized gains for tracking
more specific quantities. The latter include gains to track level sets or maxima of drifting functions (extending
the classical Robbins-Monro and Kiefer-Wolfowitz algorithms) and gains to track drifting conditional quantiles.
We also propose modifications for a given gain function (rescaling, truncation, projection) which can be used to

design gains tailored specifically to verify our assumptions.

We illustrate our method by treating some concrete applications of the proposed algorithm but we focus mostly
on the problem of tracking drifting parameters in autoregressive models. Results on tracking algorithms for these
models already exist in the literature (cf. [5, 71]) and we can derive similar results by choosing an appropriate gain
function. Using our approach, obtaining error bounds on the resulting tracking algorithm reduces to verifying

our assumptions for the chosen gain function which considerably simplifies the derivation of results.
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This chapter is structured as follows. In Section 6.2 we summarize the notation that will be used througout the
remainder of the chapter, as well as our model and two equivalent formulations for our assumptions. Section 6.3
contains our main result and respective proof as well as some straightforward extensions of the main result.
The construction and modification of gain functions for different models and different parameters of interest is
explained in Section 6.4. Section 6.5 contains three examples of variational setups for the time-varying parameter
for which we specify the tracking error implied by our main result. We collect in Section 6.6 some examples of

applications and in Section 6.7 some numerical examples. Section 6.8 contains the proofs for our lemmas.

6.2 PRELIMINARIES

First we introduce some notation that we are using throughout the chapter. All vectors are always column vectors
unless explicitly transposed. We use bold uppercase letters to represent sets of vectors. For vectors x, y € R,
denote by [ x> and (x, y) = xTy the usual Euclidean norm and the inner product in R?, respectively, and by | x|,
the I, norm on vectors in RR¥. We will represent the indicator of the event A as 14. For a symmetric d x d matrix
M, let A1y (M) and A () (M) be the smallest and the largest eigenvalues of M respectively. Denote No = N U {0}.
Let also O denote the zero matrix, I the identity matrix and J the exchange matrix whose dimensions will be
determined by the context. We will use the convention that } ;. A; = O and [, B; = I for matrices A; and
B; with such dimensions that these matrix operations (summation and product) are well defined. When applied
to matrices, the symbol [|-||, will represent the operator norm induced by the [, vector norm, which is a matrix
norm defined as
| Ax[lp

Al = max “ = = max [ Ax]p = max |Ax],.

Assume that by time 7 € N, we have observed X,, = (Xp, Xj, ..., X, ) according to the following model:
Xo ~ Py, XilXg1 ~ Po, ([ X-1), keN. (6.1)

Here the time series (Xi, k € Ny) takes value in some set X ¢ R, ie, P(X; € X) = 1, k € Ny. Let Fy =
0(Xy) denote the g-algebra generated by Xy = (Xo, X, ..., X). The time-varying parameter 0 = 6;(X;_;),
k € Ny, is allowed to depend on the past of the time series, i.e., it is assumed to be predictable with respect to the
filtration (F )gey. Further, 0 is assumed to take values in some convex compact subset © of RY, to be precise,
P(0x(Xy_1) € ®) =1forall k € Ny. We are interested in tracking the drifting parameter 0 (Xy_;) which we will

often abbreviate as 0. Denote from now on

Ce = sup [ 6. (6.2)
0ec®

At time 7 € N, the underlying (growing) statistical model is (") = P(") (@"*!), which we can write as

P (@) = {Hpgk(mxk D (6g,...,6 )e®”“,xnexn+1},
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where Py, (yo|x-1) should be understood as Py, (o). For k = 0,.. ., n, each conditional measure belongs to
Pk = Pk(@) = {P9(~|xk_1) 100, X1 € Xk}

At time k, given Xy, the model Py, contains all the relevant information about the next observation but we
do not consider it to be (completely) known. Instead, we assume that our prior knowledge about the model is
formalized as follows: for each k € N we have certain R-valued functions Gy (x, 8|x;_;) at our disposal (which
we will call gain vectors or gain function), x € X, xx_; € X*¥ c R'¥, 8 e R%, i.e, Gy : X**1 x R? - R, and these
gain vectors satisfy conditions (Al) and (A2) below.

(Al) Forall k e Nandall 0, 9 € ® the following statements hold almost surely:
86(0. 91X, 1) = [ Ge(x, K1) dPy (x{X ) (63)

is well defined, there exists a symmetric positive-definite matrix My = My (Xx_;) with (random) eigenval-
ues 0 < Ay (My) < -+ < Aggy(My) and constants 0 < A; < A5 < oo such that

8k (0, X 1) = -M(Xp1) (6 - 9), (6.4)

with 0 < A; < E[A(D(Mk)‘xk—z] < A(d)(Mk) <A, < oo,

(A2) There exists a constant C > 0 such that forall k e Nand all 6,9 € ®,

E| Gk (Xk, 01Xk1) — g6 (6, 91Xy |5 < C. (6.5)

Note that assumption (A2) is redundant if, for example, the gain vectors G (x, 6|Xx_1) are almost surely bounded.
Condition (Al) means, in a way, that, on average, the gain vector Gy (X, 0 «|Xk_1) shifts ék towards the “true”
value 6 = 0,(Xy_)):

E[ G ( Xk, Ox[Xe-1)|Fir] = €6 (0> 0xXk1) = =My (Xi-1) (65 - 61,

for some symmetric, almost surely positive-definite matrix My (X_;) such that 0 < A; < E[Aqy(M)|Fr-2] <
Aay(My) < Az < o0.
Condition (A1) can be reformulated as (Al), which gives some intuition as to the role of the function g, and
which may, in certain situations, be simpler to verify.
(A1) The quantity gi (6, 9|X)_;) defined by (6.3) satisfies, almost surely, the following conditions: there exist
random variables A;(X;_;) and A,(X;_;) and constants 0 < A; < 1, < 00,0 < L < oo such that for all
0,9 €0,
AM(Xp 1) [0 - 915 < =(8 - 9)" gr (6, 81X 1) < Ax(Xp 1) 6 - 93
gk (6, 9[Xk-1) ]2 < L[ 6 = 9]

(6.6)

with 0 < Ay < E[A1(Xpop)[Xk-2] < Ax(Xsy) < Az < o0

In view of the lemma below, if (A1) holds, then (A1) will also hold (and vice versa); the values of the constants A,

and A, appearing in the assumptions are different, though. The proof of this lemma is deferred to Section 6.8.



118 CHAPTER 6. TRACKING OF DRIFTING PARAMETERS OF A TIME SERIES

Lemma 6.1 Let x, y € RY. If there exists a symmetric positive-definite matrix M such that y = Mx and 0 < A, <
Ay (M) < Aigy(M) < A, < oo for some A1, Ay € R, then 0 < A{[x|* < (x, y) < A}||x[* < o0 and | y| < C|x] for
some A, A}, C € R (depending only on M, A,) such that 0 < A} < A < o0 and C > 0.

Conversely, if0 < A{| x| < (x, y) < A}|x|? < oo and || y| < C||x| for some A], 1, C € R such that 0 < A] < A} <
oo and C > 0, then there exists a symmetric positive-definite matrix M such that y = Mx and 0 < A; < Ay (M) <
A(a)(M) < Az < oo for some constants Ay, A, € R depending only on Aj, A; and C.

At each time k € N, the observer should be able to calculate the gain vector at (X, Xx_;) and an estimator 0 k>
Gr(Xg, 6 kI Xx_1), in order use it to update the estimate 6. In Section 6.4 we will show how gain functions can
be constructed, but before that,in the next section, we present our tracking algorithm based on the gain function

and our main result describing the quality of the algorithm.

6.3 MAIN RESULT
Consider the recursive algorithm for tracking the sequence 8 = 6;(X_;) € ® c R? from the observations (6.1):
Or1 = 0 + G (Xi, X4 ), keN, (6.7)

for some positive sequence of step sizes y < I and some (arbitrary) initial value 0y € ® c RY.
Heuristically, since the gain vector Gy (X, ék|Xk,1) moves, on average, ék towards 6y and the sequence
0 € © (since © is compact) is bounded, the resulting estimating sequence . should also be well-behaved. The

following lemma states that the second moment of 6 is uniformly bounded in k € N.

Lemma 6.2 For sufficiently small y; there exists a constant Cg such that

E|6;|?<C%:,  keN.

The proof of this lemma is given in the Section 6.8. In fact, it is enough to assume that y; is sufficiently small

for all k > N for some fixed N € N. This lemma will be used in the proof of the main theorem below.

Theorem 6.1 (Error bound)

Let Assumptions (A1) and (A2) hold and p > 1. Let the tracking sequence Oy be defined by (6.7) with the sequence
i satisfying the conditions of Lemma 6.2, 8 = 8 (Xk-1) = Ok — 0y and Ay = Ap(Xy) = 0 — 05,1, k € N. Then
for any ko, k € N such that ko < k and y;A, <1 for all kg < i < k, the following relation holds:

Lk k-1 \1/2
E[8kp < Crexp ( - ?1 > yi) + CZ( > ylz) + G ,_TanEHGHI -0k, |25 (6.8)

i=ko i=ko 0500

where Cy = (2d)1/2(C@ +Co), Cy = d1/2C1/2(1 + Az/Al), Cs = dl/z(l + Az/)tl) and C is from Assumption (A2).
If, in addition, Ay (M) > Ay (in Assumption (Al)) and |Gy (X, 0i[Xi_1)| < C almost surely, then for any
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ko, k € N such that ko < k and y;id, <1 forall kg < i <k,

k k-1 \P/2
E| 8l < Crexp ( -phi ), Vi) + Cz( > Y%) +Cs nklanEH9i+l — Ok, 15 (6.9)
i=ko i=ko 1=K05eees

where Cy = 2P\ KDE| 6y, 5, Co = d 22P7'B,CP(1+ K3 ), /M)F and €5 =207 (1+ Kélz/Al)P .

Proof: For the sake of brevity, denote 0 = 0(Xk_1), Gk = G(X, 0x[X_1) and g = g(O, Ox|Xk_1), k € N. Recall
that Fy = 0(Xy) is the o-field generated by X = (Xo, X2, ..., Xx).

We have
E[GiFi1] = 8Ok, 0xXk1) = gx» ke N.

It follows that Dy = Gy — gk, k € N, is a (vector) martingale difference sequence with respect to the filtration
{f k> ke No}

Rewrite the algorithm equation (6.7) as
6k+1: 8k+A6k+yka+ykgk, k ¢ N.

In view of Assumption (Al), we have the decomposition g, = — M} 0, with a symmetric positive-definite matrix
M = M(ék, 0k Xk_1) so that

(Sk+1 = Aek + yka + (I - YkMk)é\la k eN. (6.10)
By iterating the above relation, we obtain that for any kg = 0,..., k

Ok1 = (1= M) (I = yg_1My_1) 8k + AOk + yi Dy
+ (1= yxMy) (AOky + yk-1Dk—1)

= [i[(I—ViMi)]5ko + Zk: [ ﬁ (I—Yij)](Af?i +7yiD;).

i=ko =~ j=i+l

(6.11)

Denote A; = Z;.: x, ¥iDj» Bi = Zj.: ko Af;and C; = A; +B;. Applying the vector version of the Abel transformation
(Lemma 6.4) to the second term of the right hand side of (6.11) yields

k k k-1 k
Z [ H (I- )’ij)](AGi +yiD;i) = Cx - Z )/i+1Mi+1[ H (I- )/ij)]Ci- (6.12)

i=ko = j=itl i=ko j=iv2

Note in particular that, if we take M; = A, for j = ko,..., k, Af; = 0, for j = ko,...,k, Dy, = 1and D; = 0 for
j=ko+1,...,k, we derive that (if 0 < y;A; < 1for j = ko, ..., k)

k-1 k k
> My [T A-pid)=1- T (-yh) <1, (6.13)
i=ko Jj=i+2 j:k0+l

which we will use later.
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Using (6.12), we can rewrite our expansion of §;,; in (6.11) as

k k-1 k
Ok = [ [Tu- YiMi)]6k0 +Cr— ). Yi+1Mi+1[ ITu- Yij)]Ci-
i=ko i=ko j=it2

Take p € N. The previous display, the triangle inequality and the sub-multiplicative property of the operator
notm (IMNI, < [MI],INI,) imply that

k
[8ksallp < 10Ky o TT I = yiddill, + [ Cillp

. i=ko . (6.14)
+ 3 yialMiall, ICilp TT 11 -0l -
i=kg Jj=i+2

Due to Assumption (Al), the matrix M; has smallest and largest eigenvalues A(y) ; and A () ;, respectively,
such that almost surely 0 < y; Ayy; < yil(ay,i < yida <1, ko < i <k,and E[A(yy ;[Fi-2] > A1 > 0. Then,

E[(l - YkA(l),k)2|}—k—2] < E[l - YkA(l),k‘}—kfz] <1-yihy,

almost surely. Similarly, E[l - VkA(l),k|—7:k—2] <1- ygA; almost surely. It then follows by Lemma 6.3 that

k k k
ETTI-yMill;=E[](-yirq),)* =E lﬂ‘:[ [Ta- ViA(l),i)z‘]:k—z]]

i=ko i=ko i=kg
2 = 2
=E E[(l = YeAa).k) ‘ﬂ-z] [TU-yirg)) (6.15)
i=ko
k-1 , &
<(I-yM)E [TUT-yirg))* < [TA-yid),
i=ko i=ko

by iterating the recursion.

Let Dy, denote the I-th coordinate of the vector Dy. Clearly, foreach I = 1,...,d, { Dy, k € N} is a martingale
difference with respect to the filtration {F, k € Ny }. Using the fact that martingale increments are uncorrelated,

we derive that forall i = kg, ..., k

d i 2 d i i k
E|Ail3 :EZ( D Yijl) =2 2 viEDy = Y yiE[Dj[3<C Y 7.
121 ko 171 =k %o ko

Since B, is a telescopic sum, we also have, forall p e Nand i = ko, ..., k,

.....
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Since | C;|, is Fj-measurable for all j > i, it follows that

k
E[|Cil> TT l1-yMill,] = BE[ il I -y |Fia ]

Jj=it+2 j=i+2

:]E[ [1= yrA | Fe-2]ICill2 H (1—)’]1\(1),)]

j=i+2
k-1 k
< (1= yeM)E[|Cil2 [T (1= pjap )] <EICiH TT (1= pih).
j=i+2 j=iv2

Combining the last three displays, relations (6.13), (6.14) and (6.15), Lemma 6.3, the Hélder and triangle

inequalities and the elementary inequality 1 — x < e, we finally get that

EH(SIH—IHZ
5 k 5 k-1
<(B18 BE T 1 -yil)” +BICel + B[ 3yl Mol il 1 1=y, ]
i=ko i=ko j=i+2
k
(16 BT -yt +ElCil: + 5 yinhaE[ |Cil 1 Iy y
i=ko i=ko ] i+2
1/2 k-1 k
<(E[8x,12) (— > Z Y;) + max E[C; |2(14r > vinha [] (1—)’1'/\1))
i= ko """ i=ko j=i+2
£\/§(C_@ + C@)exp(— ?1 Z y,) (1+ )((C Z y,) + 1;1(1ax E| 6 - 6k, |2),
i=ko i=kg =~ TTh0ew

since E[| 8y, |3 < 2E[y, 3 + 2E| 6%, |3 < 2(C2 + C2), by (6.2) and Lemma 6.2. Note that |8, [> > |, |, for
p22,d"%|8;, ]2 > |8k, |, for 1 < p < 2. We have established the first statement of the theorem.

Let now the components of the gain function Gy be almost surely bounded, in absolute value, by a certain
constant C. Using Lemma 6.3 and the elementary inequality 1 — x < e™*, we have that, for each p € N, and then

some constant K, we can derive the following alternative expression to (6.14).

k
el < Kpldk 1y Tk + max 11,1+ K3 3 yioks [T (1)
i=kg  TR0ew i=ko j=i+2
)
< Kp| Ok, [pexp| = A Z Y 1+ K, 5N ‘max_||Ci,
i= kO 1 1=k0 ..... k

where we again use (6.13). Take now the p-th power (p > 1) of both sides of the inequality and apply the Holder
inequality (X7, a;)? <mP™' " |a;|? for m = 2 to get

_ A\
H8k+1\|§ <2f 1K£H8ko |§exp( A Z Yi ) + 2P 1(1+K2 )LZ) _ max 1HCng,
i= k[) =0 -

Remember that the sequence { Zj‘:ko yiD;i(X, 6 i,0;), 12 ko} is a martingale with respect to the filtration
{Fi, i € N} and that the entries of D verify |Dj;| < 2C, almost surely. Applying the maximal Burkholder for p > 1
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and the Davis inequality for p = 1 (cf. [21, 87]) we conclude that for any p > 1, with B, = ((18p°12) [ (p - 1)*?)?,

p d i p
E max HA H‘D IE max Z Z yiDi| <> E max | yiDy
i=k».., =Ko,k 15 | /55, o izkonk-1] S
=g /2 k-1 2p/2
<B, > E Z y;D <dBp2PCP| Y yi|
=1 | j=ko j=ko

The second inequality of the theorem now follows by taking expectations on both sides of the bound on |8y, Hg
above, by using the last inequality, (6.13) and the fact that |C; [} < 2271 A; |5 + 277 B; 1. O

Remark 6.1 Sometimes we will not be interested in tracking the, say, natural parameter 0y, of the model but some
other parameter 9y which is, on average, close to 0. The difference |0) — 9i|, can be seen as an approximation
term in that the parameter 0y driving the time series is actually an approximation for our parameter of interest 9.

Denoting 0y — 9 as 0y, the following expansion can be derived,

871 = Of + A% + yi Dy — yiMy (Oi — )

= A9k + yiMy (0 — 9¢) + yk D + (I — yiMy) 85
k

K K
= [ [1G- yiMi)]éio + [ [Tu- Vij)](ASk + yeMi(0k = 9x) +yiDi).

i=kg i=ko ~ j=i+l

The same note could be made for situations where gy, = —Mk(ék — 0k — nx) where ny is a remainder term which

may be random so long as it is measurable with respect to 0(X_1); it would then follow that

akH:[H(I y,M>]6ko+z[H(1 yiM;) |(86; = i + yiDy).

i=k i=ko j=i+l

Noting that ||lyx My (6 = 9 )|, < A2yxKp [0k — Ik p we conclude, for the same constants Cy, Cs, Cs as before and
all p € N, that the following also hold

A & k-1 , 1/2
E[6kalp SCleXP(_ 5 Z )’j) +C2( Z Yi)

i:ko i_kO

(6.16)
+GE Il?ax [9i1 = 9k, 2 + L KGE Z yillnil2s
""" i= k()
k-1 \P/2
ol FY e SCIeXP( ph Zk y]) + Cz( Zk yl)
1=Ko 1=Ko
(6.17)

p
- CiB( g, 190 9l ks 3 vl -
""" i=ko

where either a) & = 0y — 9y and e = 0k — O b) 6k = 0, — 0, 95 = 0; and Nk such that g = =M (8 — 1 );
(6.16) and (6.17) generalize then the bounds in (6.8) and (6.9) where we had c) &y = ék -0, 9 =0 and n. = 0.
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Remark 6.2 If we are interested in tracking 9 = ¢(60y), functional of the parameter 6 with uniformly bounded
derivatives, then by using Taylors Theorem, our Theorem 6.1 above straightforwardly delivers a bound on the ex-

pectation of || 9y — Oy = lo(;) - @(0i)| p and its powers.

6.4 CONSTRUCTION OF GAIN FUNCTIONS

In this section we address the construction, or choice, of appropriate gain functions to be used with the algorithm
(6.7). Any gain function for which conditions (Al) and (A2) hold may be used in our algorithm, and whether
a particular gain function is suitable or not depends exclusively on the model under study. Namely, this will
depend on the way in which the distributions in the model depend on the parameter which we are interested in
tracking. For certain types of models, there might be natural choices for the gain function. As before we abbreviate
Ok = 0x (Xk-1).

A situation, which essentially extends the original setup in which [76] developed their classical algorithm, is
when the data, Xy = (Xj,. .., X), is such that

Xk = (K1) + & (Xg-1)s

where the 9y (+) are functions of X;_;, and & (Xj_1) are martingale difference noise terms which may also depend

on X;_;. In this case, given X;_; we may simply take
Gk (x, 8|Xk—1) =x-0 (6.18)
since for each 0,

8k(0, 9k (X)) 1Xk—1) = Eg[ G (X 0|1 X5—1) [ Xp—1] = = (0 = 9% (X))

Non-parametric regression is an example of a model which fits into this situation and for which our results may

be used.

It could also be that Eg[ X|X,_1], the conditional expectation of the data, given the past, is not 6 but instead

¢(6) for some some smooth function ¢. In this case, given Xy _;, one should consider instead,
Gk(x,0|Xk,1) :x—¢>(0) (6.19)
and then, for each 0,

k(05 9[Xy—1) = Eg[ Gi (X, 01Xk—1)Xor] = —(6(0) — 6(9)).

The term on the far right should then be comparable to —(8 — ;). Autoregressive models, for example, fall into
this category (cf. Section 6.6.4).

One may also consider more dynamical situations where the observations themselves depend on our tracking
sequence. An example of such a setup is the [53] algorithm where we would like to track the sequence of (unique)

maxima of a sequence of functions 9; : ©® ¢ R? > R, k € N, which we may observe at any point, corrupted with
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white noise. One possibility (cf. [61]) is to use gain functions defined using random directions. Let then Dy, k € N,
denote a random sequence of independent unit vectors. We would consider, for a positive sequence ey, k € N,
the gain function

X; (61) - X£ (6)

Gr( X, X5, Okl X5, X1, Dio1) = Dy 20,

(6.20)

where, with some abuse of notation, the observations X;:,,(6x), are given by
X,fﬂ(@k) = Sk(ek + eka) + Ei,

for 6 the tracking sequence defined by the gain (6.20) and & independent, zero mean noise. Let for each k € N,
0 be the unique maximum of 9¢(+). In this case we would have, for the filtration F = O'(Xz, D k),

— e+
8k (ks Ok Fiem) = E[ — DyD{ V9 (6k) + Hy(6) + Dy EkZEkgk ‘fk—l]
. . E|Dy (& - &
= —E[DkDZ]VSk(Gk) + ]E[Hk(ek)|]-'k_1] + W

= ~E[DD{ ]V 9%(67) (Bx - 61) + i
where V29;(-) is the Hessian of 9 (-), 6} € © and, for 6 € ®,

b 9k(0 + ex D) — 9x(0 — ex Dy)
k .

H() = DD V9:(6) - 2o

Conditions (Al) and (A2) will hold if, for example, we assume that the random directions where chosen such
that E[DkDZ] are positive-definite matrices, that the Hessian V29 (+) is positive-definite over ® and that for
appropriately small e the expectation E[ |7 | ,] is appropriately small, uniformly over 6 € ®. These conditions
are comparable to the ones in the original formulation of the Kiefer-Wolfowitz algorithm, and can be significantly
relaxed by, for example, considering different types of expansions for gx depending on how large the norm of
O =0 — Oy is.

Consider now a different example. Say X c R and, given the past of the process, X_;, we would like to track
a conditional quantile of a certain distribution, i.e., we would like to track 9y = 9;(Xy_;) such that 9; = inf {x €
X2 Fr(x|Xp) 2 ock}, where ay is a sequence in (0,1)" of our choice and Fy (-X;_;) the cumulative distribution

function of Xy|Xx_;. In this case it makes sense to use
Gr(x,0Xy_1) =ay - I{x-06<0} (6.21)
since we see that
8k(0, 9Xy—1) = E[Gr (X, 01X 1) [Xpo1] = —(Fr(6 = 9[Xper) — i)

where we assume without loss of generality that the distribution is centered around the quantile ;. The quantity

in the last display clearly has the same sign as 9, — 6. Note also that the algorithm based on this gain function
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only requires knowledge of the values of the indicators 1{ X} — 6 < 0} which means that we may still track the
required quantiles without explicitly observing Xj. This problem is treated in detail for the case of independent

observations in [7] and for the more general case where the observations are not independent in Chapter 5.

For certain models it might, however, not be obvious how gain functions can be constructed, especially when
tracking multi-dimensional parameters. It is therefore important to have a general procedure that can be used to
construct candidate gain functions that can either be used directly or, if needed, modified to verify (Al) and (A2).

Assume that for each k € N, each distribution from the family of conditional distributions Py = { Py(x|Xx_;), 0 €
@} has a density with respect to some ¢-finite dominating measure y and denote this conditional density by
Po(x|Xy_1), 0 = (61,...,04) € O. Assume also that there is a common support X for these densities, and that
forany x € X and 6 € © c RY, the partial derivatives dpg(x[Xi_;)/00;, i = 1,...,d, exist and are finite, almost

surely. Under these assumptions, the conditional gradient vector

Volog po(x|Xk_1) = (alogpg(x|Xk_1)/891, ceo alogpg(x|Xk_1)/89d) (6.22)

and the square, random matrices I (0|X;_;) with entries

1 (000 = o | s pasXe) s (629
fori,j=1,...,d, can be defined, almost surely. A possible gain function is simply the conditional score of the
model, i.e. the gradient vector

G (x, 0|Xg_1) = Vg log po(x|Xy_1)- (6.24)

If (6.23) is almost surely non-singular then one might also consider
Gr(x, 0Xj_1) = I (6]X41) Vg log po (x[Xj_y). (6.25)
We justify now why these choices are reasonable. Take 9 = (9;,...,9,) € ©. It is not uncommon for the

Kullback-Leibler divergence K (Pg(x|Xk_1), Pg(x|Xk_1)) to be a quadratic form in the distance between the
parameters 6 and 9, i.e., equal to a multiple of (8 — 9)" M (6 — 9) for some (eventually random) positive semi-
definite matrix M. If so, under the assumption that we can interchange integration and differentiation and that

M does not depend on 0, g;.(6, 9|X;_;) will almost surely reduce to

[ Folog po(x/Xic-)dPa(xiXic 1) = Vo [ log po(Xe1)dPy(xXe1)

Po(xXy_1)
=V log =———>dPy(x|X;_;)+ | lo x|Xj_1)dPy(xly,_
o[ tog by APoeXicn) + [ log po(alXic) Py, )

Vo f o |I§k I;dPS(xXk—l):_VQK(PS(x|Xk‘1)’PG(x|Xk_1))

= - V(- 9)TM(9 ~9) = —2M(6 - 9).

The score will in principle depend on the past of the chain X_; and the previous argument might only be
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valid for a certain subset of values X;_; in X*~1. This dependence could prevent (A1) from holding. In these cases,
using the form (6.25) might be a good alternative since the matrix I;'(6|X_;) will act as an appropriate scaling

factor.

The dependence of the gain function on the past of the time series is in fact one of the main issues one has to
deal with when checking (A1) and (A2). On one hand, to ensure that the gain function has, on average, the right
direction, as required by (6.3), the gain will often need to depend on previous observations. This might, however,
affect either the range or the variance of the gain. Gain function, such as (6.24) and (6.25), can be modified, or
rescaled, to ensure that the respective conditional expectation gi (6, 9|Xj_;) verifies the assumptions of Theorem
6.1. One can for example truncate certain entries or factors in both G (x, 8|X;_;) and I} (6|Xy_;) to ensure that
the resulting g (0, 9|X_;) follows the required assumptions. Another possibility is to rescale, or directly truncate,

the length of a given gain vector and consider, for example, one of the following gains

G (x, 01Xg1)
1+ [ G, 0Xx1) 12
K = |Gr(x, 01Xk1) 2
|Gk (x, 0Xk-1) 2

Gr(x, 0Xx1) = G(x, 6|Xk1)min£z§z(:1;),1€)

Gy (x, 0|Xk-1) =

G, 01X 1) = Gr(x, 6%, 1) (1+ 1{|Gi(x, 6% 1) |2 2 &}),

>

for Gy an arbitrary gain function, x¥ > 0 and some function s : X’ ks R*. Note that G, Gx and Gy all preserve

the direction of Gy and have norm bounded by respectively 1, k, and the norm of Gy, almost surely.

The gain Gy is specifically rescaled for situations where we have a conditional gain g; almost surely of the form
gk = —s(Xg_1) My (6 — 9), where M has eigenvalues as prescribed by (Al). Consequently we will have that g, =
—min (s(Xk_l), K)M «(0—9) from where it follows that the largest eigenvalue of the matrix min (s(Xk_l), K)M X
will then be almost surely upper-bounded; in certain situations it will be possible to use the fact that almost
surely E[A () (M )[Xk_2] > Ay, to show that E[min (s(Xk_l), K)A(l)(Mk)|Xk_2] > cA; for some 0 < ¢ < 1and
sufficiently large . Using the fact that the function min(x, x)/x < 1 we have, again abbreviating Gy (X, 6|Xx_)
and g (6, 9[Xy-1)

EEs[ |Gy - g5 Xi1] =
min (s(Xg-1), x)
=)

) (6.26)
2)

2
) Es[[ G —gk||§|xk71]] <E|Gk - g

such that if G, verifies (A2) then so will Gy.

Another possible modification one might consider, is to truncate the iterates of the our algorithm (6.7). This
might be motivated by practical considerations in the case where the parameter being tracked has some sort of
physical meaning and is therefore bounded; it stands to reason then that the algorithm itself should be restricted

as well. We would then, for a parameter set ©, consider the sequence

01 = T (Ok + yiGr(Xi, 0xXi1)), k€N, (6.27)
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where ITg (+) acts as a projection on a convex set ® > @ in that [T (+) is an identity on © and maps points in @°
to ©.

We will provide concrete examples of gain functions later in Section 6.6. Before this, we present in Section 6.5
some examples of different types of variation that the parameter of the model may have such that our algorithm

is capable of adequately tracking it.

6.5 VARIATIONAL SETUPS FOR THE DRIFTING PARAMETER

It is clear — and in fact explicit in (6.8) and (6.9) - that the changes in the parameter have a non-negligible
contribution to the accuracy of our tracking algorithm. This is reasonable since, if the parameter changes arbitrarily
in-between observations, we should not expect it to the “trackable”. We must then specify how the parameter is
allowed to vary and, based on that assumption, pick an appropriate sequence y; which minimizes the general
bounds in (6.8) or (6.9). We will specify in this section what these bounds reduce to for concrete examples for the
variation of the parameter being tracked. These examples refer only to how the parameter is assumed to change

and are unrelated to the actual model in question; examples of specific models can be found in Section 6.6.

6.5.1 STATIC PARAMETER

We assume in this section that 6;(X;_;) = 0o, almost surely, V j € N for some unknown 6 € © such that in fact
A6 = 0, almost surely, and we are actually in a parametric setup. Note that, in this case, the second terms in both
(6.8) and (6.9) obviously vanish.

Take then y; = C,j ' log j and for g € (0,1), no = [gn], where [a] is the whole partof a € R. Let n > 2/q = N,
such that ng > 2. For large enough C, and all n > N, we have,

Zn:y>clogn " 1>logn
j=%y 0 P >
Jj=no J=no k= 2k

from where for all p € N,

n
exp ( -ph Y, yj) <n P2,
Jj=no
Note that in the case where we have E|d,, ||§ < Conf we can take the constant C, to be larger (say take rC,, r > 2)

in which case .
C exp ( -ph Y. yj) <anfa PP <P,

Jj=no

Using now the fact that 37, y? < c(log n)*n~! for some constant ¢ > 0 we have

" /2
( > yf) < (nlogn)?.
Jj=no

We conclude that we can rewrite (6.8) and (6.9) respectively as

p
maxEﬂH(?anSC and maxE(ﬂH(?an) <C,
logn nxN, \logn

n>Ny
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forall p € N. The log term in the rate cannot be avoided and is a consequence of the recursiveness of the algorithm.

Note that by taking p > ¢! and, by using Markov’s inequality and the second bound in the previous display,

we conclude that

P(wV418,~ 0]y > ¢) < 5 P(d"F 1248, ~ Bol > )

Nk

- _ (6.28)
dr-ippl2-preg) 5, |12 oo p
n 184, (dlogn) ‘o

" scnz e

=1

IN

=
L‘
NSEINANSE:

0

=
Il

By application of the Borel-Cantelli Lemma, we conclude that || 6,,— 6o||; — 0 as n — 0 takes place with probability
1at a rate n'/?>~¢ for all £ > 0.

The particular setup presented in this section, where the parameter is fixed, might seem out of place since
we are mainly concerned with tracking time-changing parameters. We would like to point out, however, that
our algorithm is recursive and, as such, always produces estimates in a fast, straightforward fashion. This is an
advantage especially over “offline” estimators obtained, say, as solutions to a certain system, which require iterative
likelihood or least squares optimization or are obtained via other indirect methods, a situation which is common

when dealing with Markov models (cf. Section 6.6.4.)

6.5.2 STABILIZING PARAMETER

Suppose now that the parameter we want to track is stabilizing. This situation might arise if the expectation of
the sequence of values that the parameter takes is converging to some limiting value. It could also be the case
that the data is being sampled, with increasing frequency, from an underlying, continuous-time process which
depends on a parameter varying continuously; in this case, the parameter varies less and less since it is allowed

less time to change. Regardless, we assume that A9, = 0,;(X;_1) — 6;,1(X;) verifies
EJA1] <ol e

for p > 1 and some decreasing sequence p;. Assume then that we have p; = cpi_/g for some constant ¢, > 0 and
B>0.

Consider first the case § > 3/2. In this case, the variation of the parameter vanishes so quickly that we are
essentially in the setup of the previous section. Indeed, take y; and g as in the previous section. The first and
third term in both (6.8) and (6.9) can be bounded in the same way as in the previous section. As for the second

term, by the Holder inequality,

n P B n
E( Y [46:],) < (n-n0)"" 3 E[A8 ]} < C(n = no)?ph,
& Pl (6.29)

<c((n- no)n;ﬁ)p <Cn VP < cnPl?,

leading to the same bounds as in the previous section
Consider now the case where 0 < 8 < 3/2. Let y; = C, (log )33 ng = n — n?3(log n)*>. By using the

elementary inequality (1+ x)® <1+ ax for 0 < a < land x > -1, we obtain that for sufficiently large # (i.e.,
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n > N1 = Ni(B)) and sufficiently large constant C,

n ' 1/3 i 1 1/3 nodx
,-:Zn:(, 712 Gyllogmo) i;:O 75 2 Cr(logno) /;o 2B
_ C,(log ”0)1/3 1-28/3 _ 1-2B/3 28/3-1 2/3\1-2B/3
= W[ﬂ -n (l—n (logn) ) ]
Cy(log no)'/? 1-28/3 _  1-2p/3 2B/3-1 2/3
> W[H -n (1-n (logn) (1—2[3/3))]

logn

= (?y(logn())l/3(10gn)z/3 > o

This yields the same bound for the first terms in (6.8) and (6.9): for # > Ny, sufficiently large constant C, and all
peN,
n
Cy exp ( —ph Z )/,) < C]}’lfp/z.

i=n0

Let us now bound the last terms in (6.8) and (6.9): for n > N, = Np(f8) and all p € N,

( Zn: y?)p/z < C((log n)2/3n54ﬁ/3(n - no))p/2 < ¢((log n)2/3n‘l3/3)‘”.

i:n(]
For sufficiently large n (i.e., n > N3 = N3(f3)) the second terms in (6.8) and (6.9) are bounded similarly to (6.29)
by
. P -B\P 2/3, —B/3\P
E( > HAG,-HP) <c((n-mno)ny")" < C((logn)*’n p )F.
i:Vlo

Finally we obtain thatfor 0 < 8 < 3/2 and a sufficiently large constant C, in the algorithm step y; = C, (log i)3i72B13,
(6.8) and (6.9) can be rewritten respectively as

nbl3 3 P
2 gl 0 g1 <

where Ng = max(Nj, N, N3) is the burn-in period of the algorithm.

Remark 6.3 If we choose y; = C,(logi)®i™* and ng = n — n*(logn)®, 0 < a <1, ay, a4y > 0, a; + &z > L in case
0 < f < 3/2, then we get the following bound of the convergence rate: for sufficiently large n and sufficiently large

constant C,

—min{f-a,a max{ay,x;+ay p
E[[8,] < C(n~minf-aaf2} (log pymaxlazrea/2} )7,

Thus , the choice a = 23/3, a1 = 1/3, ay = 2/3 is optimal in the sense of the minimum of the right-hand side of the
above inequality.

Remark 6.4 Much in the same way as for (6.28), we can establish that for any & > 0, lim,,_,o, #1278, ; = 0
with probability 1.
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Finally, consider the case 8 = 0, i.e., we assume the following weak requirement: E|A6; Hg <¢,ieN,for some

uniform constant c. Take n — ng = N, y; = y for some N € N, y > 0. Then Theorem 6.1 implies that
maxE[, |b < Cre "N + CNPP2yP + C3NPc = D.
n2

We thus have that the algorithm will track down the parameter in the proximity of size D, which we can try to

minimize by choosing appropriate constants N and y.

6.5.3 LIPSCHITZ SIGNAL WITH ASYMPTOTICS IN THE SAMPLING FREQUENCY

We consider now a slightly different setup where we assume that the parameter is changing, on average, like
a Lipschitz function. In this setup we let the time series (6.1) be sampled from a continuous-time process X;,

t € [0,1] which we observe with frequency n. This means that for each n € N we have a different model, namely,
Xp~ Py, XpIXp o~ Por(fXE,), k<neN, (6.30)

where the parameter 0 = 0] (X}_,) verifies, for some p e Nand x4, < 0o

n n n n k_k BP
B6(X5,) - 0, (XDl < (*2) .

We could have for example that 6} (X} _,) = 9(k/n), almost surely, where 9(-) € Lg(M, [0,1]) = {g(-) : | g(t) —
g(t2) |1 < M|ty - tafF, 11, t, € [0,1]} for some 0 < B < 1and M > 0, a space of vector-valued Lipschitz functions.
Let y; = C,(log n)#F-D/CED y=28/B+D) (je. yy is constant in k) for k = 1,...,n,and

Ko = ko(n) = k — (log )/ QB+ 28/ B+1)

for k > K,, = (log n)*/ (2F+1) n2B/28+1) Note that for K,,/n — 0 as n — oo forany 0 < < 1.
For sufficiently large C,

k logn
Yoyi= Cy(logn)(Zﬁ—l)/(ZﬁH)nZﬁ/(ZﬁH)(k ~ko) > C,logn > T
i=ko 1

leading to

k
exp ( -ph ). yi) <cen PP,
i=ko

In much the same way,
k p/2 2B-1 28 P 28 s \P
2 ST "3 /2] _ T byt
( > y,») < C((log n)2k+in 241 (k — ko) ) = C((log n)+in 2/3“) .
i:ko
From our assumption on the variation of the parameter, we have
p

k —ko\=rP 26 B
P 0 + +
i:r]gaxkEHH?H =05l < c( - ) < C((logn)zﬂ Tn % 1) .

.....
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Combining the three bounds, we get that (6.8) and (6.9) imply

28 _ B
sup maxE|§;|, < C(logn)2+n 2+, (6.31)
9eL(L,g) =Kn
P 26 g \P
sup maxE|[di], < C| (logn)*+Tn 2+ ] . (6.32)
9eL(L,p) 12Kn

6.6 SOME APPLICATIONS OF THE MAIN RESULT

In this section we present some examples of particular models to which our algorithm may be applied. We start
with two toy examples and present thereafter some more involved examples. The toy examples illustrate the type
of results that can be obtained from our main result and its extensions, how a gain function can be picked and
modified, and how conditions (A1) and (A2) can be checked.

6.6.1 TRACKING THE INTENSITY FUNCTION OF A POISSON PROCESS

Let us say that we are monitoring # independent Poisson processes on [0, 1] with unknown intensity function
A(+), for fixed n € N. This is equivalent to observing N(¢) = N(t,n), a Poisson process with intensity nA(t),
0 < t < 1. We would like to track the intensity function A(-) which we will assume is uniformly upper-bounded
by L.

Let us say that we observe the process with frequency 7, in that our observations are X}’ = N (k/n), such that

for each n € N we have the model
X5 =0, Xpo|Xp~Pop(|X0) = Por(- = X}), k=1,...,n,

where Py(-) represents a Poisson law with parameter 6 € R*. We will work then with pg(+|y) a conditional, shifted

Poisson mass function given by
0x”
po(xly) = exp(-0) —,
(x=»)!

for x € N, x > y. The moving parameter 60} is given, for k = 1,...,n, by

x
o = fu nA(1) dt.

Consider now the gain function Gy, of the type (6.25) and its conditional expectation gy, respectively given

by
Gr(x, 0]Xg ) = x - Xz, - 0,

gk (6, 9|XZ—1) = ]Eﬂ[XZ - XZ—I - 9|XZ_1] =—(6-9).

(6.33)
with Eg[ - |X}_, ] the expectation with respect to pg(:|X}_,). It is also simple to see that
E|G (X}, 01X;,) - g(0, 91X = EEo[1X} - X;_, - 9P X3, ] = 9 < L.

We conclude then that the gain function displayed in (6.33) satisfies both (Al) and (A2).



132 CHAPTER 6. TRACKING OF DRIFTING PARAMETERS OF A TIME SERIES

This gain function can now be used for the three setups outlined in Section 6.5 and attains the rates indicated
there. For a constant intensity function A(-) = 9,0 < 9 < L, the parameter of the model 6} reduces to the constant
9 and we simply track the rate of the process. Note that this happens since we have matched the sampling frequency
1/n with the sample size 7. If we were to have sampled the process with frequency 2/n, say, then 67 = 29 in which
case the algorithm would track 29 and not 9. The tracking sequence would then have to be rescaled by a factor
1/2 to obtain a tracking sequence for 9 itself.

In the setup where we assume that the parameter is stabilizing, take n = 1and call 9; = 0%, = |, k]il A(t) dt the

mean number of events per time unit. Note that

k k+1 1 .
89 =] [ Meyde= [ a0 at] = |6} - 6} |

We then assume that the average number of events is stabilizing in such a way that the previous display is upper
bounded, for f > 0 and ¢z > 0, by ¢ k~P. The algorithm will then track the mean number of events per time unit.

We can also assume that the intensity function A(-) belongs to Eﬁ(M, [0,1]) = {g() : |g(t) - g(t)| <
M|t; - t,|P, t1, £, > 0} for some 0 < B <1and M > 0. Call 97 = A(k/n), k, n € N. It follows that

|A9%] = [A(k/n) = A((k +1)/n)| < Mn7F,

k/n k/n
n_ gn = — - _ﬁ
|6} - 9% ‘f(k_l)/n nA(t)dt )L(k/l’l)‘ < nf(k_l)/n |A(t) = A(k/n)|dt < MnP.

The tracking sequence based on the gain (6.33) will then track the sequence 9} = A(k/n), k, n € N (as well as 6})
with the asymptotics seen in Section 6.5 (cf. Remark 6.1.)

6.6.2 TRACKING THE MEAN FUNCTION OF A CONDITIONALLY GAUSSIAN PROCESS

Assume that we observe, with fixed frequency n € N, a process X;, t € [0,1], taking values on X ¢ R%, d €
N. In this way, for k = 1,...,n, the observations available to us at time k/n will be a random vector X]((”) =
(Xo, Xijn>--o» Xk/,,). The increments X/, — X(k—1)/, Will be assumed to be conditionally Gaussian in the sense

that given the past of the process, each increment has a multivariate normal distribution, and so,
X3~ N(08, 25) XeoyalXi ~ N(OF(XEL)s ZH(X}))s k=1,..0m.

The dependence on the past in the model comes from the fact that both the mean and the covariance of the
process are allowed to depend on the past of the process. Here, for each n € N, 6}’ is an arbitrary sequence in k
depending on Xj_,, and X} a sequences in k € N of (positive-definite) covariance matrices or order d which, as
already mentioned, may also depend on X} .

In the case where the covariance structure of the process is known, we can use the gain (6.24) for which it is
straightforward to check that it verifies, given Xj_,, for x, 6, 9 € R k=1,...,n,

Ge(x X)) = (Zp(X1)) ' (x-6),

N (6.34)
2(6, 9(XL)IXG)) = =(Z(XL) (- 9(XL)-

If this gain function is used, then we assume that, almost surely, for k = 1, .. ., n, the eigenvalues of the covariance
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matrices 27 (X} _,) are 0 < A’Zl))k(XZ_l) < <Al (X}_;) < o, so that for constants A}, A7,

0 <A < Ay (XL) < Ay ((Ky) <08 < oo,
almost surely. We then have for all 8, 9 € R,

E|G(XE, 01X}_;) - g(0, 9(X;_)IXi_)3 =

= B((Z5 (X)) 7 (X - 9(X5)))  (Zp(Xe_)) 7 (x) - 9(X]))
< ()2 EEs[ X} - 9(X{_) BX{] = (W) *Etr (Z5(X,)) <dAj (A) 2

Assumptions (Al) and (A2) are then met for the gain in (6.34).

Let us now assume that the covariance matrix of the process is unknown, difficult to invert or that assumption
on the eigenvalues of the covariance matrix does not hold. In this case we can use the gain (6.25) which gives us,

forx,0,9 R k=1,...,n,
G(x,0X; ) =x-0,

g(0, S(XZ—l)‘XZﬂ) = _(9 - 9(X2—1))-

If we now assume that, almost surely, for k = 1,.. ., n, the largest eigenvalue of the covariance matrices X7 (X} _,)

(6.35)

is upper bounded by some constant A} < oo, then, forall 6,9 € RY,

Eol G(X]. 01X, - g(0, 9(X{_)X{_)[ =
= BE[1X] - 90X} ) BIXL, ] = Etr (20(X)) < d 43,

and so assumptions (Al) and (A2) are met for the gain in (6.35).
The results of Section 6.5 can be applied to the algorithm based on the gain functions presented above. If, for
each n € N, the mean of the process is constant, 07 (X}_;) = 9" then the algorithm will track the (fixed) mean

of the process. Alternatively, we may assume that the parameter is not constant but is stabilizing. We take then

n =1, and assume that the changes in the mean vector of the process are such that, for k € N,
EA67]3 = E|6; (X}_,) ~ 0 (X015 < k™7,

for some f > 0, and a constant cg > 0. The other possibility is to assume that for n € N, the mean of the
process is obtained from a function 6(-, X}_,) which is, on average, Lipschitz in the sense that it belongs to
Lp(M,[0,1], X7 ) = {g:E|g(t,X}_) - g(t2, X} )1 < M|ty — 2P, 1, £2 > 0} for some 0 < B < 1and M > 0.
Call 97 = 0(k/n,X}_,), k, n € N. It follows that

E|a9;], = E|6(k/n,X;_,) - 6((k +1)/n,X})|, < Mn™F.

In this case the algorithm tracks the mean function 6(k/n,X}_,) at times k/n, with k € N.
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6.6.3 TRACKING AN ARCH(1) PARAMETER

Consider the following ARCH(1) model with drifting parameter

12

Xi=(1+60:X0) & Xo=0(as.), (6.36)

where &, k € N, form a martingale difference sequence with variance o = 1. The drifting parameter 6 belongs
to some interval [0, p] for some p such that p*E&} < 1forall k € N.

Consider the gain function

min(X;_,, co?)

G(X, 0|Xy1) = 2
k-1

(X;-1-6X;) (6.37)

such that, since Eg Xy = 0 and Eg[X7|X4—1] = 0*(1+ 9X7 ) =1+ 9X7_,,

min(X;_, co?)

8(6,9]X 1) = Es| = (X} =1-0X}_)[Xes| = - min(X}_,ca?) (6 - 9),
k-1

for some constant ¢ > 0. We then have that A ;) < ca?, almost surely. Note that
IE[ min(X,%_l, c02)|Xk,2] = E[min ((1 + Gk,lX,%_z)fi_l, caz)‘Xk,z] > E[ min (fi_l, coz)].
By using the fact that min(a, b) = (a+b)/2 - |a — b| and the Hélder inequality, it is straightforward to check that
(g2 2 2 2 2 2 2 2\27\/2 2
2E[m1n(fk71, co )] =(c+1)o* -E|&_ - co®| > (c +1)a” = (E[(&_, - ca?)]) " > o2,

as long as for every k € N, 2c 0% > Efﬁ. We conclude that (A1) holds for the gain (6.37).

To check (A2) note first that
E[X{|X_] = a2 (1+ 0, X))

and then
EX; < o*(1+pEX; ).

Since p?E&} < 1, it follows that pa? < 1 by Jensen’s inequality. Using this recursion we get that

0.2

k
EX; <0’ + 0’ pEX;_ <0+ 0*p + 0*p’EX}_, < 0 D (pa?) ' < iy
i=1 -ap

In the same way,
E[X{|Xs1] = 1+ 20, X7, + 0: X} EEL,

and then, since p*E¢} <1,

4 UZP 24 4 4 o’
EX; < (1+21 — +p EX; )ES <E&(1+2
—o%p _

1

k
p i-
7 L (PEXL ) <.
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Using the same argument as for (6.26) we see that (A2) holds since by the Holder inequality
EG*(Xy, 0|Xk_1) < 3(EX; + p"EX}_, +1),

which is bounded, uniformly over k € N.

6.6.4 TRACKING AN AR(d) PARAMETER

We consider now an autoregressive model with d time-varying auto-regressive parameters:

d
Xe=Y 0k Xkoi+ & keN, k>d, (6.38)

i=1

where Xy, Xj, ..., X4-; have p bounded moments (cf. the end of this section). We would like to track the vector
Ok = (0x1>0%2> - - - » Ok 4), which may be random but must be measurable with respect to the o-algebra generated
by Xi_24-1- In this section we will use the notation X 45 = (Xk,Xk,l, .. ->Xk—(d—1)) for the vector of the d

observations leading up to Xj.
In analogy with the non-drifting AR(d) model, we can associate with the model its (drifting) autoregressive
polynomial z —» 1 - Y%, 6, ;z'; write then

d o
t(z,0) =1->0;z', zeC. (6.39)
i=1

It is well knows that an AR(p) model with autoregressive parameters 6 has a stationary distribution if, and only
if, the (complex) zeros of the polynomial ¢(z, ) are outside the unit circle. This motivates the definition of the

parameter sets ®(p), (cf. [71]) which we define as the closure of
{6€ R?: forall |2| < p7%, £(z, 0) * 0}, (6.40)

for any 0 < p < 1. One can show that if B(r) is a uniform ball in RY with radius r > 0 around the origin, then the

following embeddings hold:

B((p~2+-+p2 )2 co(p) c B((1+p) - 1),

which gives us some feeling as to the size of the parameter set (cf. [71]). This implies in particular that for all

p €(0,1), the set ©(p) is non-empty and bounded.

The AR(d) model (6.38) can also be described by the following inhomogeneous difference equation

Xid = C(0x)Xk-1,a + ler €, (6.41)
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where e; = (1,0, ...,0) € R and, for any 8 € R%, C(8) is the square matrix of order d

[0, 6, - 04,0 64]
1 0 0 0

co=lo 1 ~ o o (6.42)
0 o 1 0]

This matrix is usually called the companion matrix to the autoregressive polynomial ¢(z, 0); it is also sometimes
called the state transition matrix. One can show that the eigenvalues of C(0) are exactly the reciprocals of the
zeros of £(z, 0). This means that all the eigenvalues of C(0) for 8 € @(p) are at most p < 1. This in turn implies

that for any sequence of vectors 84, 0,1, -+ € ©(p), the pair of sequences

((C(Gd), C(0441),+)s (Id)Id)"'))

forms a so-called exponentially stable pair. Among other things, this gives us that so long as the p-th moments
of both the initial X;_; 4 and the noise terms &; are bounded, then the p-th moments of all Xj, k > d will be
bounded as well (cf. Proposition 10 of [71]).

A particular gain function that can be used to track the parameters of an autoregressive model can be found
in [71]. The gain function considered there is an appropriately rescaled version of the gain (6.19), namely,
Xy-1,d

G(Xp> 0Xp 1) = (Xx = 0" X1 g) —— 2,
1+ uXi ) X

for an appropriately chosen g > 0. It is straightforward to check that the conditions in (A1) on the corresponding
conditional gain g hold in this case; the lower bound in (6.6) is established in Lemma 17 of [71] and the upper
bounds are straightforward to check; assumption (A2) can be reduced to moment conditions on the observations
of the autoregressive process which are verified if the signal 6 lives in ®(p) as mentioned above. In a sense,
conditions (Al) and (A2) capture the essential properties that a gain function must have such that resulting
tracking algorithm behaves properly and, in fact, these conditions will hold even if the noise terms are not
Gaussian; we discuss this issue again at the end of this section. In the following we propose an alternative gain

function. We will first treat the one-dimensional case where we can obtain a stronger result.

Consider d = 1 and assume that the sequence 6;(X;_;) € ®(p) is almost surely bounded, in absolute value,
by p < 1. Assume also that IEX% and EXg are bounded and that for all k € N, E¢;, = Efi =0, Efi =¢2>0and
E&; = c 0%, for some constant 0 < ¢ < 5. (We can take ¢ = 3 if the noise is Gaussian, for example.) Let us say we

would like to use the following gradient type gain function

Gi(Xk» 01 Xk-1) = X (Xie/Xi1 - 6),

5 (6.43)
&k(6,91Xx1) = =X ,(6-9),

almost surely. The random eigenvalues in (Al) reduce, in this case, to A ;) (Xioy) = X}ir Note that if forall k € N
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X}_, are integrable, we have
E[Xi_1|Xk—2] = E[(Xk20ks + &) | Xua ] = X510, + EE > 0%, (6.44)

but still X7 | would not be almost surely upper-bounded by a constant. To remedy this we will truncate X7 | and
consider
. 2 9-c¢,
Gk(Xk, ‘9|Xk—1) = min (Xk—l’ TO )(Xk/Xk—l -0),

9

o (6.45)
TO )(0 - \9)

gk(e, \9|Xk,1) = —min (Xl%—l’

(Note that this is a rescaled gain function of the same type as G at the end of Section 6.4.) We now have an almost
sure upper-bound for Ay (Xx_;) = min (X2 ,,(9 - ¢)0?/4); we truncate X; | at this specific value since one

can prove (cf. Lemma 6.5) that
9-c¢ 5-c¢
. 2 2 2
]E[mm (Xk—v e o )|Xk_2] > e o“ >0,
so that (Al) holds. Assumption (A2) also holds since

i XZ ’5;,: 2\2
E|Gk(Xk,9le71)—gk(6,9|xk,l)|2:Emm( %)

< (%)ZG‘TEE% = (%)206.

Eg[|Xx = 9Xp-1*[ Xk

The previous truncation argument is still valid if we truncate X7 | at a higher value. In that case, we also still
have that (Al) and (A2) hold, with a larger constant A, in (Al) and larger C in (A2). This means that in order to
use the previous gain function we don’t need to know the exact value of o> but only an upper bound for it. Also, in
practice, for a truncation at a high enough value, the effect of the truncation will be innocuous and trajectories of
(6.43) and (6.45) will coincide, with high probability; the truncation is simply an artifact to enforce the fulfillment
of (Al) and should be of little practical importance. Up to the requirement that the distribution of the noise be
symmetrical about 0, the previous result generalizes that of [5] where the noise terms are assumed to be almost

surely bounded.

Now we turn our attention to the general AR(d) model. As we will see in what follows, assumptions (A1)
and (A2) can be easily checked. In the d dimensional case we assume that the noise terms & in (6.38) form
a Gaussian white noise sequence with mean zero and variance 0* > 0. Assume first that the autoregressive
parameters do not depend on k, i.e. 0 = 8 = (0y,...,04) € O(p) c R?. Given the vector of past observations
Xi-dd = (Xk_d,Xk_d_l, .. .,Xk_2d+1), we can see Xy 4 as a system of d equations in Xy, Xi_1, .. > Xi—_(4-1)
depending on Xy_4, Xi_g_1, . . . » Xk—24+1 and 6, which, for & ; = (Ek, s tfk,(d,l)), can be written as

A(0)Xyq=B(0)Xi g4+ §as (6.46)

the matrices A(6) and B(6) are Toeplitz matrices created from the vectorsa(8) = (0,...,0,1,-61,...,-64_1)
and b(0) = (61,...,04-1,04,0,...,0) respectively. (For m = (m_(4_1), M_(4-2)> .. .>Mos ..., M4_3, Mq_1), the
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Toeplitz matrix of order d associated with that vector is the square matrix M of order d with entries m; j = m;_j,
such that the entries of the matrix are constant over descending diagonals.) The matrix A(6) is upper triangular
with a diagonal consisting of ones whence invertible. We conclude, then, that given the full past of the process,
Xi-d>

X d[Xi-a ~ N(A™(0)B(6)Xk_q,4, 0°A7(0)ATT(8)). (6.47)

Alternatively, we could have derived the (6.46) by applying the recursion in (6.41) d times.

In this case we will consider a gain of the type (6.24) such that

Gdk(xf e‘xd(k—l),d) = Vplog PG(X|Xd(k—1))’ (6.48)

where pg(+[X;(k-1)) is the conditional density of (6.47). At the end of this section we explicitly compute (6.48);
see (6.50).

For us, each data point will be a vector X4 4, k € N such that the tracking sequence is updated with batches of
d observations from the autoregressive process. (Below, to ease the notation, we will mostly write x and y instead
of X} kd and X)) (k=1),° respectively.) This is necessary to make sure that the representation (6.47) is valid even if
the parameter 6 is allowed to change among different batches of observations; otherwise the system (6.46) would

be under-determined. We must now establish that this gain function verifies (Al).

As explained in Section 6.4, the expectation g4 can be seen as minus the gradient of the Kullback-Leibler
divergence between the transition kernel with two different parameters. This observation is particularly useful if
we are able to write this Kullback-Leibler divergence as an appropriate quadratic form. One can show that the
Kullback-Leibler divergence between two d-dimensional multivariate normal distributions Py = N(¢,, 2o) and

Py = N(p,, 21) is given by

1 (1 det X

KPo ) =3 {log 55,

> +tr(Z7'Z0) = d + (py — o) =1 (my —.uo)). (6.49)

Write, for y € RY, u(6,y) = A™(8)B(0)y and 2(0) = 0>’A7() AT (0). Let also S = S, be the Toeplitz matrix
associated with the vector s = (0,...,0,1,0,...,0) € R?! where the 1 occupies the (d +1)-th position; these are
sometimes called shift matrices. For i = 2,...,d — 1, the powers S’ are the Toeplitz matrices associated with the
vectors (0,...,0,1,0,...,0) € R where the 1 occupies the (d + i)-th position; $¢ is O = Oy, the null matrix
of order d, and S° should be read as I = I, the identity matrix of order d. It follows from the definition of the
matrix A(-) that for 6,9 € @y,

A(6) = A(9) = S(91 = 61) + S* (92— 03) + -+ + 87 (94 - 6),
from where we conclude

A(B)ATH(9) =T+ SAY(9) (91— 0)) + SPATY(9) (9, - 0,) +--- + STAT(9) (94 - 64).

We will compute now K(N((9,y),2(9)), N(u(6,y),2(6))). For all 6, the matrices A(6) have all eigen-

d

values equal to one (so then also their inverses) whence det £(6) = 024; we conclude that the logarithm in (6.49)
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is null. Also, using basic properties of the trace and the representation for A(6)A™(9) derived above,

tr(27(0)2(9)) - d = tr ((47(0)AT(0)) " (47(9)a(9))) - d
= tr (47(0)A(0)A™(9)AT(9)) - d = tr ((A(@)A-l(s))TA(e)A-l(S)) —d
= sz:tr(S"Afl(S))(Si -0;)+ ;

i=1 i

d
oot (ATT(9)(SHTSATN(9))(9; - 0:)(9; - 0)).
j=1

The inverse of an upper-triangular matrix is upper-triangular and so, forall i = 1,..., d and all 9, the matrices
S'A71(9) have null trace. Denote now for any n by m matrix M, vect(M) as the column vector containing the
nm entries of M in any (fixed) order. Write then for i = 1,...,d, v;(9) = vect (S'/A™(9)); v4(9) is always a
null vector. Note that the i, j-the element of the double sum in the previous display is given by v/ (9)v;(9), for

i,j=1,...,d. We conclude that the previous display can be written as

(9-8) [n()a(9)...va(9)] [n(O)a(9) ...va(9)] (9 - 6),

where the matrices are written by columns.

The quadratic form in the Kullback-Leibler divergence (6.49) can be written, for any 8,9 € ®  andy € RY, as

((8,y) - p(9,7)) =7(6) (u(8,y) - u(9,y)) =
= a‘zyT(B(H) - A(H)A‘I(S)B(S))T(B(G) - A(G)A_I(S)B(S))y.

Note that the matrix B(+) is linear in its argument and so se can write the expansion
B(6) = B(9) = B(6—9) = (S47) (91 = 0y) + -+ ST (84 — B41) + I(94 - 6,),
from where, using the representation for A(0)A™(9) derived above, we have
B(6) - A(6)A™(9)B(9) = Ci(9) (91— 61) + Ca(9) (92 — 02) + -+ + C4(9) (94 - 0,),
where C;(9) = (Sd*i)T ~STATY(9)B(9) fori =1,...,d. We can then write, for 6,9 € @(p) and y € R,
(B(6) — A(0)AT(9)B(9) )y = [C1(9)y-Ca(9)y](6 - 9).
We conclude that the following representation holds

gak (0, 9Xyk-1),a) = —0_2(02[1’1(9)1/2(9) ---Vd(9)]T[V1(9)Vz(9) va(9)]+

+ [CI(S)Xd(kfl),d'"Cd(S)Xd(k—l),d]T[Cl(s)xd(kfl),d'"Cd(S)Xd(kfl),d])(6 -9).

Note that the matrix that precedes the vector (6 — 9) does not depend on 0 and is clearly positive semi-definite.
We bound now the eigenvalues of this sum of matrices.
The first matrix in the sum above is positive semi-definite but has at least one null eigenvalue. It is also clear

that the entries of this matrix are polynomials in 9y, ..., 9;_;, such that, since ®(p) is a bounded set, we have that
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the largest eigenvalue of this matrix is upper bounded, uniformly over ®,, by some constant, say, K;, depending
only on d and the diameter of ®(p); we remind that this diameter is at most (1+p)? =1 <29 — 1.

We have that

T
w([a@y - ca@y] [a®y - ca®)y])-
Y SOy +-+y Ci(9)Ca(9)y.
Foreach i = 1,...,d — 1, the entries of the matrices C/ (9)C;(9), are polynomials in 9y, ..., 94; the previous

display is then also upper-bounded uniformly over ®(p) by, say, K,y'y, where K; is a constant which like K;
above, depends only on d and the diameter of @(p).

To derive a lower bound on the smallest eigenvalue of the matrix in the representation for gi, note that this

matrix can be rewritten in the form

via(9) - vaa(9) 0 ai(9) o caad) | aa(9)

: . : : + : . : :
'Vd*l,l(S) Vdfl,dfl(s) 0 Cd*l,l(S) Cd*l,dfl(‘()) Cd*l,d(S)
Cd,l(s) o cgq-1(9) ‘ yTy 0 0 ‘ 0

for v; j(9) = o>v] (9)v;(9) and ¢; ;(9) = yTCLiH(S)Cd_J-H(S)y, where we swapped the last rows of the matri-

ces. (Note that C4(9) = I so that ¢z 4(9) = y'y and also v4(9) = 07.)

Note that the top left matrices in the block matrices above are Gram matrices and therefore positive semi-
ated with the vectors v (9), ..., v4_1(9). It is simple to see that these vectors are linearly independent (this follows
from the fact that A™'(9) is a triangular matrix with s in its main diagonal) whence the associated Gramian is
actually positive-definite for each 9. Note also that the determinant of this Gramian is a polynomial in the entries
of the matrix which in turn are a polynomial in 9y, ..., 9;. Since 9 € ®(p), which is a compact set, we conclude
that the infimum of the determinant of this matrix over 9 € @(p) is lower bounded by some positive constant say,
K3. Using the same reasoning we can see that its determinant is upper bounded by some constant K4. A lower
bound on the smallest eigenvalue can then be obtained by noting that for any positive-definite matrix M of order
d,

Ay (M) > ;;_tl((]\;[)) > KI§3-1 >
(d) 4

for some constant v depending only on d and say, the diameter of the parameter set ©(p).

We conclude that the smallest eigenvalue of the block matrix on the left is at least min(v,y”y). The block
matrix on the right is clearly positive semi-definite. We conclude that the smallest eigenvalue of the matrix in the

representation for gz; above is lower bounded by min(v, y”y) by using Weyl’s Monotonicity Theorem; cf. [3].

Condition (A2) is simpler to check. Let D(Xyk 4> Xa(k-1),d) = D(Xgk,24) be the Toeplitz matrix associated
with the vector d(Xgx24) = (Xa(k-2)+1> - - -» Xak-2, Xak-1) which is simply the vector X iy 541 written back-

wards. Based on this, the gain (6.48) can be written, up to a constant depending only on 0 and with x = X4 4,
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Y = Xa(k-1),4> in the following form

Gai(x,0ly) = ~V(A(0)x - B(8)y)" (A(6)x - B(0)y)

- —2(A(9)x—B(G)y)Ta(A(e)X_B(G)y) (650)

a0
=2(A(0)x- B(O)y) ' D(x.y)],

where 0/00 represents the Jacobian operator. To verify (A2) it suffices to check that the expectation of the norm
of G4 is bounded. We omit the details but it is clear from the expression derived above that the norm of the
gain function squared is a polynomial of degree 4 in the elements of X;_; 4-;. We have already mentioned that
so long as the initial values for the autoregressive process and the noise terms have uniformly bounded p-th
moments, then this transfers to the each observation X, as long as the sequence of parameters of the model, 8,

lives in the parameter set @(p), for some p < 1.

As we saw above, the eigenvalues of the matrix appearing in the conditional gain vector g  are upper and
lower bounded by multiples of |Xx_1,4]3. We can easily get rid of this dependence by using the scaled gain
Ggx defined at the end of Section 6.4, for s(x) = | x||3 and large enough . The derivation in (6.26) shows that
(A2) still holds for this rescaled gain. The largest eigenvalue of the matrix in g corresponding to Gy is going
to be almost surely bounded by construction. We need then to verify that the smallest eigenvalue of the matrix

in gx has conditional expectation bounded away from zero such that (Al) holds. Note that

E[ X a(k-1).all51Xace-2).a] = B[ XG0y [Xace-2).a] =

E[(0ax1Xa(k-1)-1 + - + Oak.aXa(e-) + Ed(k—l))2|xd(k—2),d]-

There are three different types of terms in the sum above: a) error terms which are independent of the filtration, b)
observations which are measurable with respect to the filtration, and c) observations which can be written as an
error term which is independent of the filtration and a linear combination of previous observations of the process.
The sum can therefore be written as the sum of two terms, namely: a) a linear combination of terms which are
measurable with respect to the filtration, and b) a linear combination of error terms which are independent of
the filtration. This can then be bounded in the same way as (6.43). We conclude that the previous display is lower
bounded by ¢2.

One can then proceed as in Lemma 6.5 to show that for an appropriately large «, E[ min(Xﬁ (k-1)° K)|Xd( k—2),d]

is positive; we omit this derivation.

For the most part, the requirement that the errors be Gaussian is not used extensively so we expect that the
same results hold simply under appropriate moment assumptions: one could still use the gain (6.50) and bound
its conditional expectation directly instead of using the Kullback-Leibler representation in (6.49) and assure the
validity of (Al) and (A2) based on moment assumptions on the error terms and on the initial conditions for the

model as we did in the one-dimensional case.
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6.7 NUMERICAL EXAMPLES

6.7.1 QUANTILE TRACKING

In this section we return to the numerical example from Section 5.5 where we considered, for #n € N, the model
Xi:f(l'i)-f-O'(ti)gia izl,...,}’l,

where the &; are independent standard normal random variables, t(") = (1/11 -1,3/n-1,...,1-3/n,1- l/n)
and, for t € [-1,1],

£(1) = @ o(t) = 0.1exp(1- £).

Our quantity of interest was, for « € (0,1), the sequence 8 = 0, = 9,(#x), where
9.(t) = f(t) +a ()@ (), te[-1,1],

a quantile function of level a.
In Section 5.5 we proposed a tracking sequence for 8 based on a specific choice of gain function. Our main
result from this chapter provides us with an alternative approach for tracking the drifting quantile 8;. We can

express the quantiles 0y as a functional of py = f(#x) and v, = a(#y), i.e., O = P (pg, vi) for
ba(s,t) =s+ 1D (a),

where @ is the cumulative distribution function of a standard normal random variable. If we have sequences fi

and vy which respectively track y; and vy then
Ok = a it V1)

is a tracking sequence for 0y.
Consider the gains
Gi(x,u)=x—u, Gy, vp) = (x —p)* -, (6.51)

based on (6.18). Assuming that by time k we have observed Xy = (X, ..., X)) we can use this data and the gains
(6.51) to define the tracking sequences

iy = Hc’(ﬁk—l + Y1k G1( X ﬁk—l)))
Vg = Hc'(f’k—l + 92,k G2 (X, Vi1 | ﬁk—l)), (6.52)
Ok = $aliit 1),
where fig = 99 =2, C =5and y = (,’1,},(log(n)/n2)1/3 and y, x = Cz,y(log(n)/nz)l/3 are the step sequences.
We repeated the numerical study from Section 5.5 for this new tracking sequence for 6. We took Cy,, = C,y =

2.5, n € {100, 250, 500,1000, 10000} and « € {0.1, 0.25, 0.5, 0.75, 0.9 }. We present the results in Figure 6.71.

There seems to be some improvement over the results from Section 5.5, especially for low sample size. The
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Figure 6.7.1: Results of the tracking algorithm. All pictures contain the data (blue dots), the true quantile function for the
chosen values of & (black lines), and the respective tracking sequences (tones of red). To each picture corresponds a specific
sample size. On the first row we compare, for n = 100, the raw tracking sequence (left) with a smoothed version of it (right).

tracking sequences also seem to be less noisy than the ones obtained in Section 5.5. These improvements are not

surprising since the gain considered there only depends on the value of the indicators 1{ X} < 01} rather than

on the actual observation X}, as is the case with the gain (6.52).
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6.7.2 POISSON RAIN

In this section we present some more numerical results. Our model is a 3 dimensional Poisson process with two
space dimensions and one time dimension. More concretely, we will take a Poisson process on the unit square,
evolving in time. This kind of model is sometimes called Poisson rain — we can imagine the Poisson events as
raindrops falling on the unit square over time. Our Poisson process (N r:teo0, 1]) will have an intensity function
A(x, y,t) : [0,1]® = R* such that an event is a point in [0,1]?.

To fit this model into our framework we will discretize the unit square into a grid of 400 equally sized, 1/20
by 1/20 squares, and make observations of the process every 1/1000 time units. We will observe the process for
1 time unit such that by time t = 1 our data will be, say, a 20 by 20 by 1000 (three-dimensional) matrix M. The
(i, j, k)-entry in the matrix, call it m; j, i,j =1,...,20, k = 1,...,1000 is an observation of a Poisson random

variable with intensity

| koo i pjo edvd
R A t,
bik f(k—l)/lOOO (i-1)/20 J(j-1)/20 (.3, 1) dx dy

fori,j=1,...,20,k =1,...,1000; these 400.000 Poisson random variables are mutually independent.

The specific intensity function used in our simulation is obtained, appropriately enough, from a picture of a
cloud. The objective is to see the resulting Poisson process as a crude model for rainfall. On a computer, images
are arrays of pixels, which are small squares characterized by a potentially different color. More precisely, image
files can be seen as a collection of 3 matrices of the same size, each corresponding to a color channel - red,
green and blue. Each entry of each matrix contains a number in {0,1,...,255}, corresponding to the level of the
respective primary color; each triplet of colors corresponding to the a fixed position in the matrices characterizes
the corresponding pixel. When combined, each triplet encodes one of roughly 16 million colors (256° = 2%*)
which is called the 24-bit color palette. For example, the triplet (0,0, 0) corresponds to black, (255,0,0) to red,
(255,255,255) to white. We took then a 1000 x 1000 pixel image and discarded all but the red channel. The

resulting 1000 x 1000 matrix contains entries in {0, 1,...,255} and encodes the image seen in Figure 6.7.2.

Figure 6.7.2: Picture used to define the intensity function of the Poisson process. Image obtained from [31].
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The intensity function at time ¢, (x, y) = A(x, y, t) is obtained by taking a 500 x 500 sub-matrix of the cloud
image and seeing each entry as a height for a two-dimensional histogram, which is then linearly interpolated and
whose support we rescale to the unit square. The resulting function obtained from this 500 x 500 window, maps
the unit square to the interval [0, 255] and is 255 minus our intensity function at time ¢ — we invert the color such
that the white in the picture represents low intensity (0) and the black represents high intensity (255). At time
t = 0 we take this window to be in the bottom left side of Figure 6.7.2 and then we slowly move the window along
a clock-wise spiral towards the center of the image. This represents the evolution of the intensity function along
the time axis.

We simulated data from this model. For each i,j = 1,...,20 the sequence (m; ;) : k = 1,...,1000) is a
sequence of observations from the model described in Section 6.6.1 with n =1000 and 6} = A; j, k = 1,...,1000.
For the purpose of this implementation we assumed that for each (i, j), the intensity function is a Lipschitz
function with smoothness parameter & = 1. By this we mean that for i, j = 1,...,20, A; j(t) € £1([0,1]), where

i/20 j/20

Aii(t) = Alx, y,t)dxdy.
]() (i-1)/20 J(j-1)/20 (xy ) xay

For this setup, our algorithm tracks the matrix valued parameter
9= [Nijul, ;= [Ais(k/m)],, ij=1...,20,

by running 20 x 20 tracking sequences in parallel where each component 6, j.k evolves according to

A

9,')]')]”1 = Gi,j,k + ykG(mi,]f,k, Bi,j,k), i,j =1,...,20,

with yy = Cyn_2/3 logl/3 n and for the gain G(x, 0) = x — 0 as in (6.21); for the results seen in Figure 6.7.3 we took
C, = 2.25.In [83] and [84] we also made available videos depicting the procedure of simulating the data and
the algorithm running, respectively. For the results seen in the video, we have smoothed the tracking sequence

spatially by replacing each 0, j.k with the mean of its neighboring cells.
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1
Intensity A(x,y,1/1000) Tracking sequence 6(x,y,1/1000)
Intensity A(x,y,50/1000) Tracking sequence 6(x,y,50/1000)
Intensity A(x,y,500/1000) Tracking sequence 6(x,y,500/1000)

Figure 6.7.3: True intensity (left column) and the obtained tracking sequence (right column) at #=1/1000,50/1000,500/1000
(top to bottom). The displayed tracking sequence corresponds to a linear interpolation of the actual tracking sequence.
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The algorithm was initiated from a zero matrix, i.e., we took 6; ;o = 0, for 7, j = 1,...,20. It moves quite
quickly to a reasonable approximation of the true intensity function and then accompanies the evolution of the
intensity. The parameter of the algorithm C, needs to be picked large enough as seen in Section 6.5.3. If it is
taken too large, though, it will affect the variance of the tracking sequence. To make sure that C, can be taken
appropriately large and that the resulting tracking sequence does not have too large variability, we can smooth
the tracking sequence along the space dimensions. In this sense, we can, for fixed t, replace each approximation
by the average of its neighbors and smooth out the tracking sequence spatially. Alternatively, one can also treat
the discretization parameter for the grid (which we took here as 20) as a parameter for the algorithm and pick it
appropriately, depending on n.

The method seems to work reasonably well at capturing the shape of the underlying intensity function and
its evolution in time. Without any prior knowledge on the intensity function, the choice of an adequate step size
for the algorithm, including the value of the constant in the sequence y requires some experimentation. These

choices can, however, be motivated by tuning the algorithm using training data.

6.8 PROOFS OF THE LEMMAS

Proof:[Proof of Lemma 6.1] First suppose that y = Mx for some symmetric positive-definite matrix M such that
0< A < Aay(M) < Agy(M) <Ay < 00. Then (x, y) = x” Mx and therefore

0 < afx[3 <Ay (M)]1x]3 < {x, y) < Agay (M) |x]3 < Azlx]2

and
Iy15 = (7, y) = x"M"Mx = x" M*x < A3 x[5.

Now we prove the converse assertion. Suppose x,y € R and 0 < A/|x|? < (x,y) < A5|x|? < oo for
some A[,A} € Rsuch that 0 < A < A} < oo and that ||y|2 < C|x]2. Let V = {v = ax + by : a,b € R} be
the linear space spanned by x and y. First consider the case dim(V) = 1, i.e, y = ax for some a € R. Then
(y,x) = a|x|3sothat 0 < A] < & < A} < o0. Thus y = ax = Mx with symmetric and positive M = aI so that
0<A =LAy (M) =21z (M) <Aj<oo.

Now consider the case dim(V') = 2. Let ¢; = x/| x|, and {e}, e, } be an orthonormal basis of V. Then

x = |x[2e

y=ae + fe.
The conditions A] |x|3 < (x, y) = a]x[2 < 3| x[3 and | y]2 = /a2 + B2 < C| x|, imply that
Mlxla < @ < min{As, CYxla 18] < Clx .
Let e, be chosen in such a way that 8 > 0 (which is always possible.) Now, we change the basis of V as follows:

e; = cos(6)e; —sin(6)ey,

e; =sin(0)e; + cos(0)e,.



148 CHAPTER 6. TRACKING OF DRIFTING PARAMETERS OF A TIME SERIES
We thus rotate the basis { e}, e;} by the angle 6. In this new basis,

x = | x|y cos(0)ef + | x|, sin(0)e) = ayel + Bxess

y = (acos(0) — Bsin(0))e] + (asin(0) + fcos(0))e; = aye] + Bye;.
Recall that a, 8 > 0. Take 6 € (0, 77/2) such that a cos(6) — Bsin(6) = Jacos(8) (i.e., tan(6) = %). Then,

M @« % min{1}, C}

22 2C?
< =—=< , A< 2 g&si P <min{1}, C} + C,
27 2xl2 e 2 Ixl2 = Bx ™ lxl2  alx]2 M

Take then A; = A{/2 and A, = min{1}, C} + 2C?/A;.

Let {es, ..., ey} be the orthonormal basis of V*, so that b = {e], e}, €3,...,e,} is an orthonormal basis of

R?. Take
p| o ;
M = with p-| @/e 0
0| Ig- 0 By/B«

where the 0’s indicate null matrices of the appropriate orders. We then have that y = M'x in the basis b and
M < Ay (M) < Agy(M') < Ay We can finally obtain M by using the (orthogonal) change of basis matrix E
from basis b to the canonical basis of R? as M = E"'M’E = ET ME. Note that M has the same eigenvalues as M’
(which are all positive and finite) and is symmetric. ]
Proof:[Proof of Lemma 6.2] For the sake of brevity, we use the notations 68, = 8;(Xx_1), Gk = G(Xx, x[Xk_1)
and g = g(ék, Ok Xk_1), k € N, Fi = 0(X}) is the o-field generated by X = (Xo, X2, - .., Xi).

Recall that @ is compact so that supgg |02 < Ce. First assume E|| 0| < KC. By (6.5) and (6.6), we obtain

E|Gil5 = E Gi - gk + &) |3 < 2C + 4L(E| 6|3 + B[ 6x[3) < 2C + 4L(K +1)C = G,
which implies, in view of (6.7) and y; < T,
E[ 0|3 < 2E| 0k |3 + 292E| Gy |3 < 2KC3 + 2I2C; = C,.

Next, consider the case E[| 0|} > KC2 which of course implies E |03 > KE|6;[3. As My is a symmetric
positive-definite matrix such that 0 < A < A(3)(My) < A(4y(My) < B < oo, by the Cauchy-Schwarz inequality,

o R N A 12 1/2 A
O M0y < 07 My6y| < (67 M) (07 My6,)"” < B 2] 6.
By using the last relation, (6.2), (6.5), (6.6) and (6.7), we evaluate E| ék+1”§1

E| a3 <E|0k]3 + 29 E[0F E(GelFi-r) ] + viEI Gk |3
<E| 0y 13 - 2yxE (O M (6 - 6x)) + yi[2C + AL(E| 64 |3 + E[6x[3)]
<E|0¢]3 - 2y [AE[ 843 - E(0] Mi6:)] + y3[2C + 4LCE + 4LE[ 6, |3)]
<E| 0y 13 - 2yx[AE| 8¢ [3 - BE(||0k[210x]2)] + yi[2C + 4LCE + 4LE[ 8¢]3)].

From || 0 |3 > KE| 6,3 and the Cauchy-Schwarz inequality, it follows that |6 |2 6k | < (IEH@;(H%EHGICH%)m

IN
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EE[ 6] 2/v/K. Using this, we proceed by bounding the previous display as follows:

<E||0k])3 - 2y (AE |04 3 - B(E| 64 3E] 0k]2)/?) + y2[2C + 4LCE + 4LE[ 8¢ [3)]

A A 2B
<E|0x[3 - |6, 3(24 - == - yiaL) + y}(2C + 4LC})

VK

A 112 A 112 2B 2 2 EHQkH%
<EI0:3 - nEIO3(24 - T2 - pidl) +RQC +4LC) S

A 12 A2 2B 4LCE (K +1) +2C .

=K |05 2 - yiE| 6y 3(24 - = R ) <E[6c3,

for sufficiently large K and sufficiently small y;. Thus, for sufficiently large K and sufficiently small y;, E|| Ot I3 <
Cs. O

Lemma 6.3 Let M be a symmetrical positive-definite matrix of order d with (increasing) eigenvalues A(;y (M), the
smallest and largest of which we denote as Ay (M) and A4y (M) respectively. Then, for y > 0 such that yA(qy(M) <
1, and constants K, > 0, p € N,

IMll, < KpllM|l, = Kpr(ay (M),
0< /\(1)([— yM) < A(d)(l— yM) =1- YA(I)(M) <1,

where for p € N, | M|, is the operator norm induced by I,.

Proof: Note that for x € R4, if

X
RgzmaXL HP) 12,: ”tz7
el T

then it follows (cf. Horn and Johnson [47, Theorem 5.6.18])

Il

X
M=o [|M]l,

— RPR2 _
= RiR? = K,

We then have (c.f. Horn and Johnson [47, Section 5.6.6]) that for M a real, symmetrical, positive-definite matrix,

where 1(;)(M) is the i-th largest eigenvalue of a matrix M,

[MIl, = max /A (MTM) = max\/A ;) (M?) = A(a) (M).

The first statement then follows. Note that by application of the Holder inequality, we have ||x |, < d (a-p)/(ap) | x| q
for p < g and so we can take K, = d(P=D/Cp) if p > 2 and K, = dPifp=1.

It is straightforward to check that the matrix I — yM has eigenvalues 1 - pA;. Now, if yA4) (M) < 1 then for
alli=1,...,d,0 <y (M) < pA; < yA(gy(M) < Limplying1>1-pAgy (M) 21— yA; >1-yA4) (M) > 0and
s0 max;-y, 4 [1-yAil =1-yrey (M) <1 O

.....
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Lemma 6.4 (Abel Tranformation) For ko, k € N such that ko < k, let a; € R%, i = ko, ..., k, Bi, i = ko, ..., k,

be square d x d matrices and A; = Z]

ko 4jp i = ko, ..., k. Then

k k-1
Z B,-ai = Z(Bi_Bi+l)Ai+BkAk-
i=ko i=ko

Proof: We prove this by induction on k. For k = ko we simply have By a, = Bk, Ak, = Bk, ak, and the assertion
holds. Let us assume then that the equality holds for k = n and let us prove the result for k = n + 1. We have

n+l n n—-1
> Biai= Y. Biai+Byuan = Y, (Bi = Bis)Aj + ByAy + Bydnn
i=ko i=ko i=ko

n
= Z (Bl - Bi+1)Ai - (Bn - Bn+1)An + BnAn + Bn+1an+l
i=ko

= > (Bi = Bis1)Ai + BuaAps.
i=ko

Lemma 6.5 Consider an AR(1) model with a random, drifting parameter Oy,
Xy :Xk—lek"'gk) keN,

where the random variables & are independent of 0(Xo, ..., Xx_1), the g-algebra generated by Xy_, and for all
ke N, E& =& =0, EE = 0% > 0 and, for some constant 0 < ¢ < 5, E&} = c o*. Let also X, be such that EX} and
EXg are bounded. We assume that the drifting parameter 0y is measurable with respect to 0(Xy_,), and verifies
|0k| < q <1, almost surely, for every k € N. Then, for any s such that 4s > (9 - ¢)o?,

5-¢ ,

E[min(Xf,s)|X,_1]Z 2 o°.

Proof: Note first that since 62 > 0, if EX3 and EX;; are bounded then we can write EX? < ¢;0% and EX < ¢;0* for
some ¢y, ¢z > 0. Using the independence of the noise and the bound on the norm of the autoregressive parameters

we have that
EX} = B(X3_10k + &)* = E[X7_,07] + 2E[ X104 |EE, + EE < g*EX} + 0%,

and by using this recursion we conclude that

k-1
i 1
EX,%SqZk]EXéJraZZqZ’gaz(c1+1 2)<c><>
i=1 -4
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Using the previous display and proceeding in the same way,
EX} = E(X310k + &)* < ¢*'EX;_, + 64°0°EX;_ + co® < ¢*EX} | + ok,

with & = ¢ + 6¢%c; + 6¢°/(1 - ¢*). Using this recursion we have that

k-1
EX} < g*EXg + o'k Y " 304(cz+1 £ 4)<c>o
-9

i=1

We can now use basic properties of the conditional expectation to see that,
2 2 2 2 _y2 g2, 2
E[X}|Xi] = Xp_,0% + 2Xi10kEE, + EE; = X707 + 07,

E[X{[Xi-1] = X{_,04 - 4X;_ 0,EE + 6X;_ 0;EE; — 4X, 0, EE, + B =

= X; 0} +6X;_ 0207 + co®.

For a,b € R we have min(a, b) = (a + b)/2 — |a — b|/2 and so, by the Cauchy-Schwarz inequality and the last

display,
IE[ min (Xf,poz)‘XH] = E[zXﬁ + g - 7|Xk po ”Xt 1]
> X8+ P (B[(%F - po?) xa])”,

for p > 0. We now have, by plugging in the expressions derived above and simplifying,

E[(X} - po?)’[Xi1] = B[X{|X0] - 200 B[ X}|X, ] + p0" =
=X; 0 +2(3-p)X; 070>+ (c —2p+p*)ot = (Xi_lei + ﬂ02)2,

if we pick p = (9 — ¢)/4 > 1. Combining the previous two displays we conclude that

IE[ min (Xf, %02)|XH] > %02,

and the statement of the lemma follows a fortiori. O
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uniquely, 15
Estimator, 8
adaptive, 12, 21, 24, 59
asymptotically unbiased, 10
Bayesian, 18, 22
least squares, 13
M-, 12, 24, 30, 32, 40, 41
Maximum likelihood, 13
minimax, 10
moment, 13
near-minimax, 10
parametric, 30
robust, 96, 100
semi-parametric, 30
unbiased, 10
Z-,12
Exponentially stable pair, 136

Filtration, 4, 141

natural, 4, 110
Finite sample, see Asymptotic
Finite sample seeAsymptotic, 9
Fisher information, 125
Frequency, see period



Frequentist paradigm, 18, 70
Function
Besov, 72
continuous, 11, 49, 55
continuously differentiable, 11, 72
difeomorphism, 23
Doppler, 80
gradient, 12
Holder, 11, 58, 72, 78
importance, 6
link, 21, 24, 57, 64
Lipschitz, 11, 72, 103, 104, 130, 145
monotonous, 11, 24, 59, 66
regularity, 11, 70, 72, 75
shift, 97, 98
Sobolev, 72, 78
spatially inhomogeneous, 24
spline, see Spline
staircase, 34
support, 22
Functional, 3, 4,123
functional, 14

Gain function, 17, 25, 94, 115, 117, 123, 125, 131-133,
136

Gaussian process, 132

Gaussian white noise, 80, 136, 137

Gradient, 125

Hellinger Metric, 76

Hellinger metric, 19, 61, 62

Hessian, 125

Holder inequality, 101, 111, 121, 128, 134, 135
Homeomorphism, 15

Identifiability, 3, 24, 30, 39
Inference, 2
Inhomogeneous difference equation, 135
Intensity function, 131
Invariant
measure, 14
set, 15

Jacobian matrix, 23, 53, 82, 141
Jensen’s inequality, 134

Keifer-Wolfowitz algorithm, 17
Kiefer-Wolfowitz algorithm, 123, 124
Kiefer-Wolfowitz algorithmm, 115
Kullback-Leibler

ball, 20, 62, 64, 76
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Divergence, 20, 76
divergence, 61, 62, 125, 138, 139, 141

L2 metric

L, metric, 76

Large sample, see Asymptotic
Lipschitz function, 132, 133

Markov Chain

Monte Carlo, 5, 19, 22
reversible jump, 24

Markov chain, 4, 22, 96, 100

mixing, 4

Monte Carlo, 52, 81, 83
reversible jump, 23, 71

state space, 4

stationary distribution, 4, 22
transition kernel, 4, 22, 23

Markov inequality, 101
Markov’s inequality, 128
Martingale, 4, 110, 121

increment, 5, 110, 134
property, 4

sub-, 5

super-, 5

Martingale increment, 120
Median, 103

Memory, 4
Metropolis-Hastings

algorithm, 22, 23
independent sampler, 22
random walk sampler, 22, 52

Model, 2, 3, 31, 70, 75

family, 11, 21, 23
non-parametric, 3, 24, 70, 103
parametric, 3, 100, 127

score, 125

semi-parametric, 3, 24, 30

Observation, 3
Operator norm, 149

Parameter, 2, 3

drifting, 16, 25

nuisance, 3, 12, 24, 30

set, 3,8

time-chaging, 134
time-changing, 114, 118, 127

Parametrization, 2
Partition, 72



Period, 12, 24, 30, 31, 33, 34, 41, 43, 48, 49, 54, 58
Periodogram, 30
Poisson Process
independent scattering, 8
Poisson process, 5, 6, 12, 24, 30, 31, 33, 41, 49, 71, 131,
144
intensity function, 24
coloring, 8
homogeneous, 6
inhomogeneous, 6
intensity function, 6, 12, 24, 30, 41, 49, 54, 58,
145
rain, 144
thinning, 54
Posterior, 18, 53, 55, 56, 70, 76, 81
adaptive, 21
contraction, 19, 20, 24, 54-56
mean, 19
spread, 48, 54
Prior, 18, 21, 50, 54, 55, 60, 70, 72, 76, 78
adaptive, 21, 23
conjugate, 19
Dirichlet, 24, 59
hierarchical, 24
mass condition, 20
random series, 21
spline, 24, 50, 51, 54, 57, 71
Stochastic process, 21, 57
Prior mass condition, 20, 56, 57, 62, 65-67
Projection, 96, 127
Pseudo-random generators, 15
seed, 16

Quadratic form, 125, 138
Quantile
conditional, 95, 101
constant, 100, 101
extreme, 98
regression, 25, 94, 104, 142
tracking, 25, 95, 96, 104, 124

Random directions, 124
Rate
optimal, 70
Rate of convergence, 9, 70, 76, 100-103
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adaptive, 12, 21, 24, 70, 76

minimax, 21, 59, 104

non-parametric, 11

parametric, 10
Recursive algorithm, 25, 94, 96,100, 103, 104, 114, 118
Regression, 25, 76, 80, 104, 123, 142
Remaining mass condition, 20, 56, 57, 62, 65-67, 76
Reproducing Kernel Hilbert Space, 70
Risk

function, 9

L, 10

Ly, 10

minimax, 9-11, 70
Robbins-Monro algorithm, 17, 99, 115, 123
Robustness, 12, 13, 25
Rotation of the circle, 15, 33, 38

Sampling
independent, 3
Seed, 16
Sieve, 20, 56, 67, 76
Simulated annealing, 22
Spline, 24, 50, 70, 71
B-,51,57,70,72
coeflicients, 24, 51, 57, 65, 70, 72
knots, 24, 51, 70-72, 78
order, 70, 71
State transition matrix, see Companion matrix
Step size, 94, 99-103, 106, 114, 118, 127, 128, 130, 142
Stirling’s approximation, 65
Stochastic approximation, 16, 94, 114
Strong consistency, see Consistency

Taylor’s Theorem, 123

Thinning, 7

Time series, 4, 5, 25, 116

Time-changing parameter, see Parameter
Toeplitz matrix, 137,138

Tracking, 16, 95, 96

Tracking algorithm, 94

Truncation, 126, 137

Uniform ball, 135
Uniform Ergodic Theorem, 15

Weak consistency, see Consistency
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