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Non-Parametric Inference and Tracking for Poisson Processes

d

Non-parametric statistics provides a framework which is rich with tools that allow to make inference on high-
or in�nite-dimensional models under very weak assumptions on the underlying structure of the data. Poisson
processes have a long-standing history as some of the most widely used processes, not just in Statistics, but also
in �elds such as communication, meteorology, seismology, hydrology, astronomy, biology, medicine, actuary sci-
ences and queueing.�is thesis is divided into two parts: Inference and Tracking. Most of the results in the �rst
part apply speci�cally to Poisson processes. In the second part we work with more general models but some of
the results there can also be applied to these processes.

Poisson processes are o�en used formodeling periodic time-varying phenomena.We study a semi-parametric
estimator for the period of the cyclic intensity function of an inhomogeneous Poisson process. We make no para-
metric assumptions on the intensity function which is treated as an in�nite dimensional nuisance parameter.
A new family of estimators is proposed for the period of the intensity function; we address identi�ability and
consistency issues and present simulations which demonstrate good performance of the proposed estimation
procedure. We compare our method to competing methods on synthetic data and apply it to a real data set from
a call center.

�e starting point for our next problem is also this call centre data. Having concluded that the data presents
daily periodicity, we model it as Poisson process and propose methods to estimate its daily intensity function.
More speci�cally, we use non-parametric Bayesian methods. We start by showing some estimates for the call
center data obtained via MCMC for free knot B-spline based priors to which we will return later.�e theoretical
performance of these priors falls within the general approach that we apply for making Bayesian inference on
Poisson processes. Our results cover the case when the process is observed in full but also the case when only
a discretized version of it is observed which is quite important in applications. Under the assumption that the
intensity function is an α-smooth function, these results imply that our B-spline based adaptive (i.e. without
using knowledge of the smoothness α) prior delivers adaptive rates of contraction for estimating the parameter
of the Poisson process. We present further results about using general stochastic process priors, endowing the
scale of the intensity function with a prior and about priors on monotonous intensities.

Spline-based priors like the ones we have used for making inference on the call centre data are quite popular
in Bayesian non-parametric statistics. Practitioners commonly use these priors, mostly due to their �exibility and
to the ease with which one can design MCMC algorithms for them.�e number and the location of the knots
as well as the respective B-spline coe�cients are endowed with a prior. Although the practice of using random
knots is commonplace in applications, theoretical results on these priors were still missing in the literature. Under
some mild, su�cient conditions, rates are attained for these adaptive priors. In doing so, we propose a theoretical
framework that can be used to motivate certain design decisions when selecting priors that would otherwise be
made arbitrarily. We present some numerical results for synthetic non-parametric regression data to illustrate
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the advantages of working with random knots when estimating spatially inhomogeneous functions.

In the second part of this thesis we treat some tracking problems. Tracking refers to a framework where we se-
quentially collect data from a distribution indexed by a parameter that is slowly changing in time.�is problem is
of fundamental interest in sequential analysis and has many applications in signal processing, speech recognition,
communication systems, neural physiology, ecology and econometrics. An important problem which we can �t
into this framework is that of quantile regression. Paralleling regression, where we are interested in estimating
the conditional mean of a response variable given some covariates, in quantile regression we want to estimate
a conditional quantile.�is alternative take on the problem of regression results in more robust estimates and
if we estimate several quantiles simultaneously this gives us a quite complete description of the evolution of a
regression function in time. Our results apply to a more general setting than quantile regression since we allow
for conditional dependences between consecutive observations which is quite natural in the context of sequential
sampling; also, we allow the level of the quantile being tracked to change in time.�e algorithm we propose is
recursive and can therefore be implemented in a straightforward and e�cient way and we derive non-asymptotic,
uniform bounds on its approximation error.

Finally, we consider also the problem of tracking a dri�ingmultivariate parameter in amore general context: a
time series is observed, each observation depending on a parameterwhichwe allow to vary slowly.�is constitutes
a growing statistical model whose time-varying parameter we would like to track. Instead of assuming that we
know the model completely, we only presume to have access to a so-called gain function that depends on the
previous estimate and on a new observation.�is gain function can be used, together with a step sequence, to
update an arbitrary approximation of the dri�ing parameter. Applying this procedure sequentially results in a
tracking algorithm. We derive a non-asymptotical, uniform error bound on the error of the tracking sequence
and specify what this bound becomes for di�erent assumptions on the variability of the dri�ing parameter. What
constitutes a proper gain function depends on the parameter (or functional of the parameter) of interest and on the
dependence of themodel on the dri�ing parameter. We outline how gain functions can be constructed for general
models and how they can eventually be modi�ed to verify our assumptions. �e problem of tracking dri�ing
parameters in a d-dimensional autoregressive model is treated in detail, along with some simpler examples to
illustrate the method. Some numerical results are also presented.
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Notation

N, N�, Z,Q natural numbers, natural numbers including zero, integers, rational numbers
R, R+, R+� real numbers, positive real numbers, non-negative real numbers�, � less or equal (resp. larger or equal) up to a universal constant�, o(�); �, O(�) of a smaller order, of the same order[a], �a�, �a� integer part of a, largest (resp. smallest) integer no larger (resp. smaller) than a
a (mod b) a moludus b; remainder of the division of a by b
a ∧ b, min(a, b, . . . ) minimum between a and b, minimum between a, b, . . .
a ∨ b, max(a, b, . . . ) maximum between a and b, maximum between a, b, . . .
Rd d-dimensional Euclidian space
a, ad; A, Ad vector in Rd , random vector in Rd�a, b� inner product between a and b� ⋅ �p lp norm on Rd or Lp norm on L�

C complex numbers[ai , j]i , j matrix with entries ai , j
I, Id , O ,Od , J , Jd Identity of order d, zero matrix of order d, exchange matrix of order d
det(M) , tr(M), vect(M) determinant of M, trace of M, column vector containing all entries of M
diag(a), diag(M) diagonal matrix containing entries of a, vector with entries of main diagonal of M
L (M), L �(M) linear space spanned by the columns of M, and its orthogonal complement
dim �M�, dim �L (M)� Dimension of the linear space spanned by the columns of M
λ(i)(M) i-th largest eigenvalue of M
M > �, M ≥ � M is positive (semi-)de�nite���M���p, ���M���� operator norm induced by lp, spectral norm (operator norm induced by l�)
1{⋅}, 1{⋅} indicator of {⋅}
log, exp, e natural logarithm, exponential function, Euler’s numberSqk space of all splines of order q with knots k�Bq

k,�, . . . , B
q
k, j� B-spline basis for Sqk

sk,θ spline with knots k and B-spline coe�cients θ
supp f support of f[t�, . . . , tr] f r-th order divided di�erence of f over t�, . . . , tr
f (�), f (r) function f , r-th derivative of f∇a f , ∂f�∂a gradient of f with respect to a, Jacobian of vector a valued f with respect to a
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Fα space of functions with regularity αFA family of spaces of function with regularity α ∈ ALα , Lα(I), Lα(L, I) Lipschitz space of function on I with Lipschitz constant LHα ,Hα(I),Hα(L, I) Hölder space of function on I with Hölder constant LWα ,Wα(I),Wα(L, I) Sobolev space of function on I with radius L
N(ε,A, d) covering number of A ⊆ A using ε-balls according to the metric d
Ac ,A�A complement of A ⊆ A�M ,M�, �M ,M, µ� measurable space, measure/probability space
a.s., a.e. (µ-) almost surely (µ-) almost every
Pθ , Pθ�⋅ � X� distribution, conditional distribution
X(n), Xn, Xn,d sample of size n, time series up to time n, d observations leading up to Xn�Fn , n ∈ N� �ltration
σ(Xn) σ-algebra generated by Xn, natural �ltration
p(n)θ �X(n)� likelihood of X(n)P = {Pθ ∶ θ ∈ Θ} parametrized model
X ∼ P X distributed according to P
E[X � F], E[X � X] conditional expectation
Pθ , Eθ , Vθ probability, expectation, variance with respect to Pθ , resp.
V(X) variance-covariance matrix of the random vector X
oP(�) converges to zero in probability
OP(�) bounded in probability
P�→, a.s.�→ convergence in probability, almost sure convergence

RW
n , Rp

n Lp risk
rpn(Θ) minimax risk over Θ with respect to Lp loss
Mn(θ), Ψn(θ) criterion function (M- or Z-)
m(θ), ψ(θ) limiting criterion function (M- or Z-)
Rx, Rnx, R−�x operator R acting on x, operator R acting n times on x, pre-image of x via R
π(θ), Π(θ) density of prior on θ, prior measure on θ
π(θ � X(n)), Π(θ � X(n)) posterior density on θ, posterior measure on θ
h(θ , �), h(pθ , p�) Hellinger distance between pθ and p�
K(θ , �), K(pθ , p�) Kullback-Leibler divergence between pθ and p�
V(θ , �), V(pθ , p�) a Csiszár f-divergence between pθ and p�
B(ε, θ) Kullback-Leibler ball centred at θ with radius ε
A(θ → �) MCMC acceptance probability for the move θ → �
φd , Φ d-variate standard normal p.d.f., standard normal c.d.f.
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1
Introduction

T��� ������� contains some introductory material for the remaining content of this thesis. We present a
broad overview of some important concepts in Statistics providing details only when the material is relevant for
what follows in the subsequent chapters.�erewill be some focus on basic elements ofMathematical Statisticswith
an emphasis on non-parametric estimation. M-estimation, stochastic approximation, non-parametric Bayesian
statistics and adaptation will be treated in more detail, since they constitute the main content of the subsequent
material. We also summarize the scope of the remaining chapters, including themodels they apply to, themethods
used, the results obtained and the applications of these results.



� CHAPTER �. INTRODUCTION

� .� N��-P��������� S��������� ��� I��������

Statistics is a very diverse �eld which encompasses the study of quite a number of problems connected with ex-
tracting information from data. More speci�cally, we might want to summarize data, design experiments, model
or infer upon certain phenomena, pick among competing alternatives, assess the uncertainty of a certain approx-
imation, keep track of a varying quantity, forecast the evolution of a given phenomenon, etc. In mathematical
statistics these tasks are performed on solid theoretical ground by using tools from di�erent �elds of Mathemat-
ics; primarily Probability�eory, but also Algebra, Analysis, Approximation�eory, Ergodic�eory, Functional
Analysis, Information�eory, Measure�eory, Numerical Analysis and Stochastic Process�eory.

�e central object of interest inMathematical Statistics is themodel and its relationwith observeddata.Models
are collections of probability distributions which represent the di�erent possible ways in which data may have
been produced.�ese, in turn, are not observable, but data are, and carry information about their distribution
and therefore about the model. Data can thus be used to perform what is arguably the most fundamental task in
Statistics: inference; to learn from data. Inference is used to answer the following question: Given a model P and
data produced by a �xed distribution from this model, say P�, what can be said about P� based on the observed
data? In this thesis we will be mostly concerned with inference. We will be working with certain �xed models, or
sometimes with families of models, and we will use di�erent techniques to approximate or estimate P�, based on
observed data, in a number of di�erent settings.

Although in this thesis we will be mostly concerned with deriving theoretical results, we will, at some points,
use the methods we develop on actual data. When working with real data – meaning data produced by some
physical phenomenon – one might wonder how well a model could ever represent the mechanism producing
such data. A�er all, no data, simulated or otherwise, is, to the best of anyone’s knowledge, actually being produced
by a probability measure.�e data should instead be thought of as being produced by some unknownmechanism;
the model should only be expected to act as a proxy for this mechanism and capture the main (probabilistic)
features of the mechanism. �e true distribution P� can be thought of as the best approximation in model P
for this mechanism. To perform inference, we assume that the data were indeed generated according to some
unknown “true” distribution P� ∈ P and then determine which element in P best plays this role.�is justi�es, to
some extent, our use of large, in�nite-dimensional models, to do what is known as non-parametric statistics. In
the next section we start by formalizing the concept of size of a model.

� .� M����� ��� P��������������

It should be intuitively clear that the choice of the model P is very important when making inference. If we work
with a largemodel, containing many possible distributions, then we will have more �exibility when constructing
estimators and will arguably be able to �nd a better approximation for the underlying mechanism generating the
data. To make the concept of size of a model more precise, it is customary to parametrize the model. We then see
the model P as the collection P = �Pθ ∶ θ ∈ Θ�,
where we say that θ is the parameter of the model; it lives in the parameter setΘ and indexes the distributions Pθ
in the model P . A parametrization is simply a labelling of the distributions in the model and so it is not unique.
We will, however, always make sure that parametrizations are such that if Pθ = Pθ′ then θ = θ′ (i.e. the map
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θ � Pθ is a bijection) in which case we say that the parameter θ is identi�able. It means that we can identify a
distribution from the parameter that indexes it, making the terms distribution and parameter interchangeable, as
well as the terms model and parameter set.�e parameter set Θ will itself usually be a metric space (Θ, d) and
the parametrization will be made in such a way that models whose parameters are close (according to the metric
d) will be close themselves; cf. (�.��) for an example of a metric on P .

If the parameter set Θ is such that, without loss of generality, Θ ⊂ Rd for some d ∈ N, then we call P a
parametric model. If Θ ⊂ F where F is an in�nite-dimensional space (of, say, functions or sequences), then
we call P a non-parametric model. In the mixed case, where Θ ⊂ Rd × F , we call P a semi-parametric model;
sometimes we will also refer to a semi-parametric models as having a parametric part and a non-parametric part
(here a subset of Rd and a subset of F respectively).

Typically we will be interested in estimating �(θ�), some functional of the unknown parameter θ�. �is
functional can be the parameter θ� itself, although one might also be interested in means, variances, modes or
quantiles of Pθ� . In non-parametric models, if θ� is a curve, we might also be interested in estimating a point of
maximum or a derivative of θ�, or θ� at a point. In the semi-parametric models, we will o�en only be interested
in the parametric part of the model, in which case the non-parametric part will be referred to as a nuisance
parameter.

We work with all three types of models in this thesis but we focus mostly on non-parametric models and
methods. Roughly speaking, working in a non-parametric setting corresponds to making less assumptions about
the underlying mechanism which generates the data.�is results in a larger set of distributions being considered.
Working with non-parametric models sometimes translates into methods that are, in a sense, simpler and more
universal in their applicability, requiring less input from the user and being less dependent on the speci�c nature
of the data. �e di�culty in the use of non-parametric models is in establishing theoretical properties for the
estimates; this follows from the fact that less assumptions are made about the data and that themodels are allowed
to bemore versatile, and thereforemore complex. Computational and numerical issuesmay also arise on occasion
due to the use of high-dimensional objects. We walk then the line betweenmaking as few assumptions as possible
– and in doing so increasing the applicability and �exibility of the method – and making enough assumptions –
so that we still have tractable models and also enough structure to be able to establish theoretical properties and
assure some level of precision.

We will defer our presentation of examples of estimation methods to Sections �.�, �.�� and �.�� since these are
already quite connected with the content of the remaining chapters. Before this, we focus on sampling, di�erent
types of data and some of the models we will be treating in later chapters.

� .� S�������

Consider a generic, parametrized model P = {Pθ ∶ θ ∈ Θ}. Each distribution Pθ is formally a probability
measure on a common measurable space (Ω,F), where Ω is the sample space and F a σ-algebra of events on
Ω. It is common to assume that the measure Pθ admits a density pθ with respect to some common dominating
measure, typically the Lebesgue measure µ, i.e., pθ is the Radon-Nikodym derivative dPθ�dµ. An observation
is the outcome of a random variable X on a measurable space (X ,X), which maps Ω to X and which is F-
measurable.

We mention �rst the framework of independent sampling.�is is, by far, the most common sampling scheme
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in Statistics, primarily due to the fact that the independence assumption considerably simpli�es the theoretical
treatment. In this setting, it is assumed that an observation X is distributed according to P� = Pθ� ∈ P . An inde-
pendent and identically distributed (i.i.d.) sample is a stochastic vector of observations X(n) = {X�, X�, . . . , Xn}
which is distributed according to P(n)� , the n-fold product of the measure P� with itself, meaning the components
Xi are mutually independent and distributed according to P�. It is also possible that the sample is independent
but not identically distributed (i.n.i.d.) in that each element Xi of the sample is distributed according to a (pos-
sibly di�erent law) P�,i ∈ P . An example of this setup is that of regression with, say, �xed design, where we
make observations of a function corrupted with noise at pre-speci�ed points t(n) = (t�, . . . , tn) and then attempt
to recuperate the underlying regression function based on these observations. We would then have that for a
�xed (noiseless) regression function f�, each observation Xi is distributed like Pθ�, i , with θ�,i = �i( f�) where
�i( f�) = f�(ti), a functional of f�.

�ere are also certain dependence assumptions one can make on the observations such that it is still fairly
straightforward to make inference. For these, the data is typically assumed to be a time series, meaning that the
observations X�, X�, . . . are seen as a sequence of random variables or vectors.�e dependence structure is then
expressed in terms of how the law of a certain observation depends on the observations that came before it. We
speak then of thememory of the Stochastic process.

A Markov chain of order � (or with memory �) is a discrete-time Stochastic process Xn such that Xn+��Xn has
the same (conditional) distribution as Xn+��Xn, whereXn = (X�, . . . , Xn). Informally, given the present, the future
of the chain and the past of the chain are independent. Further, if the distribution of Xn+��Xn does not depend
on n, the chain is said to be time-homogeneous. If all the elements of the chain take values in the same spaceX (here called the state-space) then this means that our model is now parametrized by a parameter set Θ ×X
which corresponds to each observation Xn�(Xn−� = x) being distributed according to a conditional probability
measure Pθ(⋅�x).�e measure Pθ(⋅�x) is also-called theMarkov kernel of the chain and it is always required for
the mapping x � Pθ(⋅�x) to be F-measurable. �ese de�nitions can be generalized in the obvious fashion to
Markov chains of order m.

An important quantity studied in the context of Markov chains is the stationary distribution of the chain.�is
is an invariant distribution for the chain in the sense that if an element of the chain is ever distributed according
to this measure, then all subsequent states will have the same distribution. Given aMarkov chain, one o�en wants
to know if such a distribution exists and to determine it, or be interested in how long a chain which is started from
an arbitrary state, takes to mix (read: to be distributed according to the stationary distribution).�e stationary
distribution of the chain is o�en studied using probabilistic methods but one can see it as the long-term behavior
of a dynamical system where the initial measure for the chain evolves under the action of the transition kernel in
the context of Ergodic�eory (cf. Section�.�).

A di�erent type of memory structure which observations may have the Martingale property. A �ltration of
a measurable space (Ω,F) is a growing sequence of σ-algebras F� ⊆ F� ⊆ F� ⊆ � ⊆ F. A Stochastic process
Xn is said to be adapted to a certain �ltration (Fk ∶ k ∈ N�) if each Xn is Fn-measurable, n ∈ N. One o�en
considers the natural �ltration, where for n ∈ N, Fn = σ(Xn) is the σ-algebra generated byXn (with F� the trivial
σ-algebra). �e discrete-time process Xn is called a Martingale with respect to the �ltration (Fk ∶ k ∈ N�) if
the process Xn is (Fk ∶ k ∈ N�)-adapted, E�Xn�� < ∞, and veri�es the Martingale property: E[Xn+��Fn] = Xn.
Informally, a �ltration corresponds to the growing knowledge about a certain aspect of the process as time
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progresses; the Martingale property states that knowledge of the past does not help to predict the future. In the
same way, one speaks of a sub- or super-martingale if the martingale property is replaced with E[Xn+��Fn] ≥ Xn

and E[Xn+��Fn] ≤ Xn respectively. A useful fact about Martingales which we will need in Chapters � and � is that
Martingale increments (sometimes called Martingale di�erence sequence) Mn = Xn − Xn−� (with M� = X�) are
uncorrelated.

We can also consider less structured, growing statistical models where each observation Xn, given Xn−�, is
distributed according to some conditional distribution depending onXn−� and some vector of parameters θn ∈ Θn.
We will be referring to these as simply time series and both Markov chains and discrete-time Martingales will be
particular types of time series.

In Chapters � and � we will be working directly with Markov chains and time series but we will not be
concerned with stationary distributions, since they will in principle not exist in the setup we will be considering
there. In Chapters � and � these processes will also make an appearance in the form of a Markov Chain Monte
Carlo sampling algorithm (wewill brie�y summarise these samplingmethods in Section �.��). In these algorithms,
the usual relation of the Markov chain with its stationary distribution is, in a sense, reversed. Given a measure
fromwhichwe cannot sample directly, our aim is to construct aMarkov chainwhich has thismeasure as stationary
distribution. �is will be used to indirectly obtain a sample distributed according to this measure: trajectories
from such a chain can be used as approximate samples from its stationary measure, which is particularly useful
in Bayesian non-parametric Statistics (cf. Section �.��).

In the next section we provide some basic facts about Poisson processes which are a particular example of a
continuous-time Markov processes and of a continuous-time sub-martingale. A description of continuous-time
counterparts of Markov processes and Martingales can be found in [��], for example.

� .� P������ P���� P��������

Poisson point processes are widely used statistical models in �elds such as communication, meteorology, seismol-
ogy, hydrology, astronomy, biology, medicine, actuary sciences, econometrics and queueing, to name but a few.
�ey are point processes that can be used to model counts of random event.�eir wide use can be attributed to
several factors [��]. It seems to be a fairly accurate model in many applications which might be explained by the
relatively mild qualitative conditions under which a point process is a Poisson process.�ese processes also have
a simple structure and are commonly used both as a preliminary tool of study – eventually paving the way to the
use of more sophisticated point processes – or as a basic component for constructing other stochastic processes
whose sample paths are quite di�erent from those of a Poisson process. Regardless, they are used extensively and
have many interesting properties.

�e literature on Poisson processes is vast so we collect here just a few fundamental results and de�nitions
which are used in the remaining chapters. Poisson point processes are essentially random collections of points,
with certain properties, usually on a d-dimensional Euclidian space, although they can be de�ned inmore abstract
spaces.�e variablewhich indexes the process is usually referred to as time and/or space.�e processNt represents
the number of times that a certain event has occurred by time t; say arrivals of calls at a call centre (see Chapters �
and �). One can also consider a time and a space variable and express the location of imperfections on a long
strand of material under stress in time. With two space dimensions and one time dimension one can for example
model rain droplets falling on a plot of land over a certain period of time (see the numerical example in Chapter �).
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A one-dimensional Poisson point process (cf. [��]) is usually simply referred to as a Poisson process. It is a
continuous-time stochastic process Nt , indexed by time t ≥ �, non-decreasing, càdlàg and taking values in N�

such that N� = � (i.e. a continuous-time counting process). It has independent increments, and is parametrized
by a non-negative function λ(t), t ≥ �, called the intensity function of the process. When this function is constant,
the process has stationary increments and is called homogeneous, otherwise it is called inhomogeneous (or non-
homogeneous). Any increment of the process Nt is Poisson distributed, such that for � ≤ a < b, we have

P�Nb − Na = n� = exp� −� b

a
λ(t) dt�� ∫ b

a λ(t) dt�n
n!

, n ∈ N�.

Poisson point processes in Rd can be de�ned in a similar fashion and have analogous properties. We present
here a simulation-based characterization that can be found in [��].�is characterization is adequate here since it
de�nes Poisson processes in Rd in a way which is quite close to the procedure which is used to simulate them;
we use simulated Poisson data for the numerical results in Chapters � and �.

For S ⊆ Rd , a realization from a Poisson point process on S , Ξ = {Ξ(S) ∶ S ∈ S} is a random collection of
points ξ = (n, {x�, . . . , xn}); if n = � we have (�,�).�e event space of this process is then

E(S) = �(�,�)� ∞�
n=��(n, {x�, . . . , xn}) ∶ xi ∈ S , i = �, . . . , n�.

�e process is characterized by a non-negative intensity function λ ∶ S � Rd for which it is assumed that

� ≤ �
S
λ(s) ds <∞,

for all bounded subsets S ⊆ S . Note that we may have ∫S λ(s) ds =∞.

Obtaining a realization ξ from Ξ(S) on subsets S ⊆ S , with intensity λ, a function on S ⊆ S , can be represented
as a two-step procedure. If ∫S λ(s) ds = � then ξ = (�,�). If ∫S λ(s) ds > � then Ξ is obtained by �rst sampling a
discrete random variable N with mass function

pN(n) = P(N = n) = exp� −�
S
λ(s) ds�� ∫S λ(s) ds�n

n!
, n ∈ N�.

If n = � then ξ = (�,�) and the realization has been obtained. Otherwise, given N = n > �, we sample n points
according to i.i.d. continuous random variables Xi in S, with probability density function

pX(x) = λ(x)∫S λ(s) ds , x ∈ S .
�us, if the intensity λ is constant on S, then the density of the resulting homogeneous point process, given N is
simply uniform on S. In the inhomogeneous case, given N , the density is proportional to the intensity λ.

�is construction makes it clear how to draw a realization from Ξ(S), call it ξ = (n, {x�, . . . , xn}), n ∈ N�,
xi ∈ S for i = �, . . . , n, via an acceptance-rejection algorithm [��]. We start by selecting an importance function�

��e function g must be positive and bounded on S and we must know a procedure to sample from g.



�.�. POISSON POINT PROCESSES �

g and de�ning

M = sup
x∈S

pX(x)
g(x) .

If S is a bounded set, then it is always possible to take g as the density of a uniform measure on S. To sample
from Ξ(S), we then perform the following procedure:

�. Take x = �.
�. Sample n according to pN .

�. If n = � then jump to step �.

�. Generate a point x according to g and, independently, u according to a uniform measure on [�, �).
�. If uMg(x) ≤ pX(x) then replace x with {x, x}.
�. If x has less than n elements then return to step �, otherwise continue to step �.

�. Take ξ = (n, x) as a realization of Ξ(S).
Based on the representation given above, it is simple to see that the likelihood (with respect so an appropriate

dominating product measure) at λ, given a realization ξ of Ξ, can be written as

pΞ(ξ) = pN(n)pX �N(x�, . . . , xn � N = n)
= exp� −�

S
λ(s) ds�� ∫S λ(s) ds�n

n!
n!

n�
i=�

λ(xi)∫S λ(s) ds= exp� −�
S
λ(s) ds� n�

i=� λ(xi).
(�e multiplicative factor n! comes from the possible reorderings of the elements in {x�, . . . , xn}.)

�e particular case of the one-dimensional Poisson point process with intensity λ on [�, t] occurs when we
take S = R+, S = St = [�, t]. If we denote N = Nt = Ξ�[�, t]�, then the likelihood at λ becomes

pΞ(N) = exp� −� t

�
λ(s) ds +� t

�
log �λ(s)� dNs�.

If we refer to a Poisson process with constant intensity λ(s) ≡ �, s ∈ [�, t], as a standard Poisson process, then as
the expression above suggests, we can write, for each t ≥ �, the density of Nt with respect to a standard Poisson
process as

pλ(N) = exp� −� t

�
�λ(s) − �� ds +� t

�
log �λ(s)� dNs�.

(see for example [��].)
Another important feature of Poisson processes which can also be seen from an algorithmic perspective

is thinning [��]. �is procedure is used to reduce the number of events in a Poisson point process. Consider a
Poisson point process Ξ on S with intensity λ and pick a function α such that for all x ∈ S , � ≤ α(x) ≤ �. �e
function � − α(x), x ∈ S represents the probability of removing from Ξ a point located at x. Given a realization
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ξ = (n, {x�, . . . , xn}) of Ξ(S), S ⊆ S , the process of independent Bernoulli thinning corresponds to removing
from ξ each xi with probability � − α(xi), i = �, . . . , n, independently of one another; the realization from the
thinned point process is denoted ξα = (m, {��, . . . , �m}) and contains the points that were not removed. �e
index m corresponds to the number of points {��, . . . , �m} ⊆ {x�, . . . , xn}. �e realization ξ�−α contains the
removed points. Making use of the representation of Poisson point processes based on the acceptance-rejection
method, one can see that ξα is actually a Poisson point process with intensity λα(x) = α(x)λ(x).�is also means
that an inhomogeneous Poisson point process on S with intensity λ can simply be seen as a homogeneous Poisson
point process on S thinned according to α(x) = λ(x)� ∫S λ(s) ds. All of this can be extended straightforwardly
to allow thinning into more than two processes; in this case the procedure is usually called coloring [��].

Poisson point processes have another important property called independent scattering.�e term independent
scattering has been introduced into the literature quite recently in [��] but it conveys very well how the points
in a realization of a Poisson point process arrange themselves independently of one another.�e property can
be described as follows. Consider a Poisson point process Ξ on S ⊆ Rd with intensity λ and two disjoint subsets
A, B ⊆ S . Let ΞA and ΞB be obtained by restricting Ξ to A and B, respectively, in the sense that for any S ⊆ S ,
given a realization ξ from Ξ(S), ξA and ξB contain the points from ξ which are in A∩ S and B ∩ S, respectively.
As the notation suggests, ΞA = {Ξ(S) ∶ S ⊆ A} and ΞB = {Ξ(S) ∶ S ⊆ B} are Poisson point processes on A and
B since they are simply obtained from Ξ via thinning using α(x) = 1A(x) and β(x) = 1B(x), respectively. With
this in mind, it is straightforward to check that

pΞA∪B�ξ� = pΞA�ξA�pΞB�ξB�,
so that the two Poisson point processes are even independent. In passing we also see that by taking B = Ac , a
thinned Poisson point process and the Poisson point process containing the remaining points are independent.

� .� C����������, A���������� ��� N��-A����������

Let us return now to general, parametrizedmodels. Once amodel has been �xed and data collected, the goal of the
inference procedure is to devise an estimate, i.e., a measurable function of the data, θ̂n = �(X(n)); this estimate is
meant to be an approximation for the unknown parameter θ� and therefore for the unknown distribution of the
data, P�. Assume that the parameter space Θ is endowed with a metric d. Being a function of the data, estimates
are random and so any criterion to assess the proximity of an estimator and an estimate must be a probabilistic
one. A basic requirement is that of asymptotic consistency. An estimator is consistent for θ� if,

Pθ��d(θ̂n , θ�) > ε�→ �, for every ε > �, or, (�.�)

Pθ��limn→∞ d(θ̂n , θ�) = �� = � (�.�)

as n converges to in�nity. We will sometimes write this as θ̂n
P��→ θ� and θ̂n

a.s.�→ θ� and call it weak consistency
and strong consistency, respectively. Alternatively, one may also have consistency in expectationwhen it holds that

Eθ�d(θ̂n , θ�)→ �, (�.�)
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as n converges to in�nity.�e expectation in the previous display is also known as a risk function of the estimator
θ̂n. (We will return to the risk of an estimator in the next section.)

Consistency as presented in (�.�) through (�.�) only provides us with a qualitative measure of the preciseness
of an estimator; it states that the estimator is, with high probability, close to the unknown parameter as n grows.
We are mostly interested, however, in how close the estimator is to the unknown parameter, typically as a function
of the sample size n; we would like to quantify the estimation error. We speak then of an (asymptotic) rate of
convergence rn of an estimator θ̂n with respect to the metric d, if the rescaled sequence

r−�n d(θ̂n , θ�) (�.�)

is bounded, as n goes to in�nity, either in probability, almost surely or in expectation; we will also say that θ̂n is
rn-consistent for θ�.

�e asymptotics of an estimator corresponds to its large sample behavior.�is type of analysis is made mostly
out of convenience since one can make use of several limiting results such as strong laws and central limit
theorems in their analysis, as well as disregard certain approximation errors which vanish in the limit. It is then
o�en possible to characterize quite precisely the asymptotic (limiting) probabilistic behavior of the estimator
under study. Of particular interest is determining the optimal (read: smallest) sequence rn such that (�.�) has a
nontrivial (tight) distributional limit. �e downside of asymptotics is that it is usually not known how large a
sample should be, such that this limiting behavior comes into e�ect and such that it is in fact a good representative
for the outcomes of the estimator. Nonetheless, determining the asymptotic behavior of an estimator constitutes
a standard theoretical tool in Mathematical Statistics.

�e alternative – orperhaps complementary – approach, is to establishnon-asymptotic (meaning �nite sample)
results by either deriving the exact distribution of the estimator or attempting to compute exactly, or bound,
quantities such as risk in (�.�), for each value of n.�is is o�en a di�cult task. Deriving the exact distribution of
an estimator, in particular, can o�en only be done under very strict assumptions and computing risks such as the
one in (�.�) is sometimes not informative since the quantity o�en depends on the unknown parameter θ� or may
not vary monotonously. Nonetheless, making use of the structure of speci�c estimators (such as the recursive
estimators we will present in Chapters � and �), it is sometimes possible to derive non-asymptotic results. It will
also be clear that in certain situation it will be possible to derive asymptotical results from these (stronger) �nite
sample results.

It is also of interest to know, for a given model, how properties such as consistency and rates of convergence,
depend on the value of the parameter being estimated. Speci�cally, we would like to know how well a parameter
can be estimated, uniformly over the model. �is leads to the notion of optimality with respect to a certain
criterion. We describe this in a bit more detail in the next section.

� .� M������ R ��� ��� M������ R����

Risk functions play a very important role in Mathematical Statistics. �ey are used to de�ne minimax risks,
which are the most commonly used criteria for assessing the optimality of an estimator over a certain model.�e
inference procedure then boils down to the following: we pick a risk function and in doing so we implicitly de�ne
a minimax risk – the smallest risk that an estimator can achieve, uniformly over the model; we then design an
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estimator which attains this minimax risk which we call an optimal estimator (with respect to that risk).

Risk function can be de�ned in a general context (cf. [��]) but we mention here just Lp-risk functions.�ese
are perhaps the most commonly used risk functions when the parameter set Θ is a normed space, and are given
by

Rp
n(� , θ) = Eθ��(X(n)) − θ�pp , (�.�)

where � ≤ p ≤∞.�e L�-risk, in particular, plays a classical role in estimation theory.�e so-called bias-variance
decomposition, where the L�-risk is written as the sum of a (squared) bias term and a variance term, respectively:

R�
n(� , θ) = �Eθ �(X(n)) − θ��� +Eθ��(X(n)) −Eθ �(X(n))���. (�.�)

If the bias term is zero, or equivalently, if Eθ �(X(n)) = θ, then the estimator is said to be unbiased; if this holds
only in the limit, then the estimator is said to be asymptotically unbiased. Based on (�.�) one then sees that an
estimator with small L�-risk is concentrated around the “true” underlying parameter (small bias) and has low
spread about its mean value (small variance) both of which are desirable properties. We would like to design
estimators that have both low bias and low variance and consequently low risk.�ese are, however, to some extent,
opposing tasks; reduction of the bias is usually achieved at the expense of increasing the complexity or variability
of the estimator so that it may best �ts the data, but this will o�en lead to an increase in the variance of said
estimator in what is known as the bias-variance trade-o� . For the rest of this section we will stick to the L�-risk.

Returning to the general framework of estimation risk, it is instructive to look at the following quantity

rpn = rpn(Θ) = inf
�
sup
θ∈Θ Rp

n(� , θ), (�.�)

which is called theminimax risk overΘ [��]; the in�mum is taken over all measurable functions of the data X(n).
An estimator �� is then called a minimax optimal estimator over Θ, if asymptotically this function attains the
minimax risk

sup
θ∈Θ Rp

n(��, θ) = rpn(Θ) �� + o(�)�, as n →∞, (�.�)

although we will typically also be satis�ed with near-optimal estimators �′� which satisfy

sup
θ∈Θ Rp

n(�′�, θ) ≤ Cn r
p
n(Θ) (� + o(�)), as n →∞, (�.�)

for some bounded sequence Cn. We will also typically be satis�ed if Cn = C logc(n) for some constants C ≥ � and
c ≥ �. A minimax estimator matches then the risk of the “best” estimator at estimating the “worst” value for the
unknown parameter.

For parametric models the minimax risk is typically, under some regularity conditions, of order n−���; it is
commonplace to refer to this rate as the parametric rate since it is the standard rate obtained for parametric
models. Minimax risks over non-parametric models have been studied for many models since the �rst results in
this context were derived in [��] for non-parametric regression with random design and density estimation. If
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Fα = Cα(Rd) denotes the space of all α-times continuously di�erentiable functions on Rd , then the minimax
risk of estimation of the m-th derivative (m ∈ N�) of a regression function or density, based on independent a
sample of size n, is of the order n−(α−m)�(�α+d). �is particular rate is o�en referred to as the non-parametric
rate since it is of a larger order when compared to the parametric rate. In a sense this is the “price” to pay for
considering larger models. Another family of models over which there is a typical value for the risk are models
indexed by spaces of monotonous functions, where the risk is typically of order n−��� (cf. [��, ���]).

�e relation between the size of a model and the ease with which a parameter can be estimated should now
be clearer, at least for the particular case where the parameter set Fα is Cα(Rd): since the spaces Fα are nested,
meaning thatFα ⊆ Fβ whenever α ≥ β, the non-parametric rate (read: estimation error) drops, as the smoothness
or regularity α of the model increases because the parameter space becomes smaller.

�e choice to nest the parameter sets according to di�erentiability is a particular choice.�ere are other ways
of “peeling” subsets of C�(I), the space of continuous functions on I ⊆ R, which may be more convenient when
working with speci�c types of non-parametric estimators. We can also simply consider the space of Lipschitz
functions Lα = Lα(L, I), L > � and α ∈ (�, �], the space of all continuous functions f such that

� f (x) − f (y)� ≤ L�x − y�α , (�.��)

for all x , y ∈ I. One might also consider theHölder class of functionsHα =Hα(L, I), L > �, which is the space of
all α� = �α� times di�erentiable function such that their α�-th derivative satis�es the Hölder condition

� f (α�)(x) − f (α�)(y)� ≤ L�x − y�α−α� , (�.��)

for all x , y ∈ I.�e Sobolev class of functionsWα(L, I), α ∈ N, L > �, is the space of all functions f ∶ I � R such
that f (α−�) is absolutely continuous and

�
I
� f (α)(t)�� dt ≤ L�. (�.��)

� .� A���������

�e typical situation for non-parametric models is that the minimax rate of estimation over a certain class Θ will
depend, in terms of order, on some characteristic of the elements of Θ. To make this precise, we say that there
exists some, smoothness index α ∈ A and an order relation �, such that for α, β ∈ A, α � β implies Θβ ⊆ Θα . We
then consider the problem of estimation over a family of modelsΘ = ΘA = �α∈AΘα . Clearly, from the de�nition
of minimax risk, ifA ⊆ B then rpn(ΘA) ≤ rpn(ΘB), i.e., smoother models can, in a minimax sense, be estimated
more accurately. In principle, we would then like to choose the smallest parameter set Θ which contains the true
parameter of the data, and then we would like to consider an estimation problem over Θ only.�is means that
we would like to pick Θ = Θα such that for all β such that β � α, P� ∈ Θβ and for all β such that β � α, P� �∈ Θβ.

�is choice, however, is not feasible, in the sense that it relies on a-priori knowledge of a characteristic of the
unknown θ�.�is is, in a sense, the cost for considering estimation problems over non-parametric families of
models: the parameter set indexing the model becomes so large that the behavior of the estimation procedure
quantitatively depends on the unknown parameter – a �xed estimator, tailored speci�cally to perform well for a
�xedmodel, will no longer be able to e�ectively estimate an arbitrarymodel of the family.
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�e problem of adaptation [��, ��] then corresponds to designing estimators which do not rely on knowledge
of the smoothness of the model but which nonetheless attain the rate rpn(Θα), eventually up to a logarithmic
factor. Such estimators are said to be rate adaptive. Wewill explain how adaptation can be performed in a Bayesian
context in Section �.��. In the next sections we will start outlining some techniques for constructing estimators.

� .� M-���������� & S���-P��������� E���������

We turn our attention now to the construction of estimators, namely of M-estimators for parametric models and
semi-parametric models (where the non-parametric part is treated as a nuisance parameter). In Chapter �we will
use these results to produce an M-estimator for the period of an inhomogeneous Poisson process with a cyclical
intensity function.

M-estimators represent a general class of statistics that are obtained as maximizers of a certain function of
the data, called a criterion function.�ese estimators where �rst proposed in this form by Peter Huber in ����
in the context of robust estimation and actually generalize many classical estimators. Robust estimation refers to
the design of estimators which show “insensitivity to small deviations from the assumptions” [��].

In a classical M-estimation setup we are given a sample X(n) = {X�, X�, . . . , Xn} from the distribution
Pθ� ∈ P = {Pθ ∶ θ ∈ Θ ⊂ Rd}, a parametric model taking values in X ⊂ Rm. We select a parametrized function of
the sample ρ ∶ X ×Θ � R, giving rise to a criterion function which is de�ned as

Mn(θ) = �
n

n�
i=� ρ(Xi , θ). (�.��)

�e M-estimator associated with this criterion function is the maximizer

θ̂n = argmax
θ∈Θ Mn(θ). (�.��)

Under some mild conditions, by the strong law of large numbers, for each θ ∈ Θ,
Mn(θ) a.s.�→ M(θ) = Eρ(X , θ),

as n tends to in�nity.�is particular form of the limiting criterion function motivates choosing the function ρ
such that M(θ) has a maximum at the point θ = θ�; if the criterion function is close to M(θ) and is maximal at
θ = θ̂n, then θ̂n should be close to θ�.

Alternatively, for a vector valued function ψ(x , θ) ∶ X ×Θ � Rd , one might also consider the criterion

Ψn(θ) = �
n

n�
i=� ψ(Xi , θ), (�.��)

and de�ne an M-estimator (in this case sometimes called a Z-estimator) as the solution θ̂n ∈ Θ to the system of
equations

Ψn(θ) = �. (�.��)

�e vector valued function ψ(x , θ) can be taken, for example, as the gradient, the vector of partial derivatives of
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a function ρ(x , θ) with respect to each component of θ = (θ�, . . . , θd), if these exist.
�e generality of this method can be seen by noting that several classical types of estimators can be ob-

tained for speci�c choices of ρ(x , θ): if the data admits a density f (x , θ) and ρ(x , θ) = log f (x , θ), the re-
sulting M-estimator will be the maximum likelihood estimator; the M-estimator associated with the function
ρ(x , θ) = −�x− g(θ)��� where g ∶ Θ � Rm is a least squares estimator; ifm = � and the �rst dmoments of the data
exist and can be expressed as g�(θ), . . . , gd(θ) then the M-estimator corresponding to taking each component
of ψ as ψi(x , θ) = xi − gi(θ), i = �, . . . , d, is a moment estimator; if for α ∈ (�, �) we pick ρα(x , θ) = −(α −1{x ≤
θ})(x − θ) then the resulting M-estimator will be the α-th quantile of the data. (We will return to the problem of
estimating quantiles in Chapter �.) Besides generalizing these di�erent estimators, we have in general some added
�exibility in that we are allowed to choose the function ρ. A criterion function can then be picked speci�cally for
each model or parameter of interest, but also, working with functions ρ which are truncated in some way may
lead to the resulting M-estimators that have good robustness properties [��].

�e following theoremsmake a statement about the asymptotical consistency ofM-estimators andZ-estimators.

�eorem �.� (M-estimator consistency [��])
Let Mn be a sequence of random functions and let M be a �xed function of θ such that for every ε > �,

sup
θ∈Θ �Mn(θ) −M(θ)� P�→ �

sup
θ∶�θ−θ� �≥ε

M(θ) < M(θ�).
�en any sequence of estimators θ̂n such that Mn(θ̂n) ≥ Mn(θ�) − op(�) converges in probability to θ�.

�eorem �.� (Z-estimator consistency [��])
Let Ψn be a sequence of random vector-valued functions and let Ψ be a �xed vector-valued function of θ such that
for every ε > �,

sup
θ∈Θ �Ψn(θ) −Ψ(θ)� P�→ �

inf
θ∶�θ−θ� �≥ε �Ψ(θ)� > � = �Ψ(θ�)�.

�en any sequence of estimators θ̂n such that Ψn(θ̂n) = op(�) converges in probability to θ�.

�e requirement for the convergence of the criterion function to take place uniformly over the parameter set
Θ is typically a stronger requirement than what is needed for the resulting M- or Z-estimator to be consistent but
it leads to a straightforward proof of the results.

A couple of notes about the generality of�eorems �.� and �.�. First note that these theorem do not necessarily
require criterion functions to be of the form (�.��) or (�.��), respectively, and can be applied to any (measurable)
sequence of functions. Note also that the conclusions of the theorems hold under the assumption that the M-
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estimator (resp. Z-estimator) approximately maximises (resp. is a zero of) the criterion function; this typically
gives some extra �exibility when designing computational implementations of these procedures.

In Chapter � we will use M-estimation theory to produce an estimator for the parametric part of a semi-
parametric model.�e criterion function we use cannot be written point-wisely as a mean of an i.i.d. sequence
of random variables. �e functions of θ that we are averaging to produce our criterion function will then not
have the same mean. Instead, the mean of these functions will be a certain functional of the non-parametric part
of the model.�is adds some extra di�culty to checking the �rst condition of�eorem �.� so that we will need
some results from ergodic theory in our proofs. For completeness, we present here a brief summary of some basic
de�nitions and results from ergodic theory which we use in that chapter.

� .� B���� P����� �� E������ T�����

�e adjective ergodic stems from the Greek words ergon, meaning work and odos, meaning path.�is term was
coined by Ludwig Boltzmann in the late ��th century while working on the kinetic theory of gases. Ergodic�eory
has a transversal presence in many �elds of Mathematics and in Statistical Mechanics and deals mainly with the
long term evolution of the (average) behavior of dynamical systems. Ergodic�eorems give conditions under
which statements about this behavior can be made and began appearing in the literature in the ����’s by the hand
of John von Neumann and George David Birkho�.

In this section we consider a probability space (M ,M, µ), whereM is a compact metric space, µ a probability
measure on the Borel σ-algebra on M andM is the completion of the Borel σ-algebra on M with respect to µ.
Let R be a mapping from M onto itself. Given x ∈ M we call the sequence R�x , Rx , R�x , . . . , the trajectory of x
(under the action R); Rk representing a k-fold composition of R with itself, R� the identity.�is trajectory will
typically correspond to states of a (discrete) dynamical system with initial state x evolving according to R.�e
time average of a µ-integrable function f over a trajectory is the mean

�
n

n�
i=� f (Rkx) (�.��)

while its space average is the integral

�
M

f (x) dµ. (�.��)

One of the main questions of Ergodic�eory is to derive conditions under which the limit of the time average
(�.��) exists andwhen it is equal to the space average (�.��).�is equality usually takes place undermild conditions
for µ-a.e. initial state x and is the content of the classical Birkho�-Khinchin�eorem (�eorem �.�).

Write now RA = {Rx ∶ x ∈ A} and R−�A = {x ∈ M ∶ Rx ∈ A}. We say that µ is invariant with respect to R if
for any A ∈M we have µ(R−�A) = µ(A). We can now state the Birkho�-Khinchin�eorem.

�eorem �.� (Birkho� Ergodic�eorem [���])
Consider a measure space (M ,M, µ) whereM is a σ-algebra on M and µ is a probability measure on (M ,M),
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invariant with respect to R.�en, if f is a µ-integrable function supported on M,

�
n

n�
i=� f (Rkx)�→ f ∗(x),

as n goes to in�nity, for some µ-integrable function f ∗ and µ-a.e. x ∈ M. Also f ∗(Rx) = f ∗(x) for µ-a.e. x and∫M f ∗(x) dµ = ∫M f (x) dµ.
If in addition the mapping R is ergodic (see the de�nition bellow), then the function f ∗ is µ-a.e. constant

and so f ∗ ≡ ∫M f (x) dµ, µ-a.e.. With the extra assumption that R is ergodic, the Strong Law of Large Numbers
can be shown to follow from this theorem (cf. [��]). In Chapter � we need, however, a uniform version of such a
result and therefore we present here the (stronger) conditions under which this can be assured.

IfR is invertible, continuous,with a continuous inverse andbothRAandR−�Aaremeasurable thenR is called a
homeomorphism. Ameasure µ, invariantwith respect toR nowveri�es, for anyA ∈M, µ(R−�A) = µ(A) = µ(RA).
A set A ∈M is an invariant set if it satis�es R−�A = A.

An invariant mapping R is said to be ergodic if each invariant set A ∈M veri�es either µ(A) = � or µ(A) = �.
It is known (cf. [��]) that for any continuous map R of a compact metric space onto itself, there exists a Borel
probability measure µ which is invariant with respect to R; if that measure is unique then R is said to be uniquely
ergodic.

We are now ready to state a uniform version of the Ergodic�eorem.

�eorem �.� (Uniform Ergodic�eorem [��])
Suppose R is a homeomorphism on a compact metric space M and µ a Borel probability measure, invariant with
respect to R. If R is uniquely ergodic then for any continuous function f supported on M,

�
n

n�
i=� f (Rkx)�→ �

M
f (x) dµ, as n →∞,

uniformly over all x ∈ M.

An example of a setup where this theorem can be applied is the following. For τ > � take M = [�, τ), letM
be the Borel σ-algebra on M and let µ be the uniform measure on [�, τ) such that its density w.r.t. the Lebesgue
measure is identically τ−�. Consider now, for any T > �, the mapping R ∶ [�, τ) � [�, τ) de�ned as Rx = x + T(mod τ). �is mapping is called a rotation of the circle and is clearly a homeomorphism. Further, if T�τ is an
irrational number, then µ is the unique invariant probability measure with respect to R which implies that R
is uniquely ergodic (cf. [��], Chapter �). �eorem �.� can then be applied to conclude that for any continuous,
Lebesgue-integrable function f ,

�
n

n�
i=� f (Rkx)�→ �

τ � τ

�
f (x) dx ,

as n goes to in�nity, uniformly over all x ∈ [�, τ). We use this result in Chapter �.

�ese rotations also play an important role in the generation of pseudo-random numbers.�e value x is then



�� CHAPTER �. INTRODUCTION

called a seed and for an appropriate choice of a value for T and τ, the resulting trajectory (τ−�Rkx ∶ k ∈ N�) can
be used as an “approximation” for a sequence of uniformly distributed numbers on [�, �). It is also possible to use
mappings of the type Rx = Tx (mod τ).�e two resulting procedures to generate pseudo-random number are
usually called congruential generators [��]. In practice, selecting a good combination of seed, T and τ is quite
important for the quality of the resulting sequence as random numbers and consequently for procedures in which
they are used such as Monte Carlo simulation methods.

� .�� S��������� A������������ & T�������

Up to now our focus has been on estimation problems and the asymptotical properties of estimators. Typically,
as the sample size grows, we are capable or producing more accurate estimates for the parameter indexing the
distribution of the data.�is is possible since as more data is collected it becomes evident that some values of the
parameter are unlikely to have produced the data we have observed.�is narrows down the likely parameters in
the model to be producing the data, resulting in better estimates.

We can also consider a more general, non-static, tracking setup where it is natural to see the observations as
a time series. We still collect data from a �xed model, but the parameter indexing the distribution of the data
changes with time. Now there is no longer (necessarily) accumulation of information about some �xed, “true”
parameter and the focus shi�s from producing estimators to producing sequences that track the time-changing
parameter.

�e natural type of tracking algorithms are recursive ones: at each time point, we update our current approxi-
mation based on newly observed data and the structure of the model.�e information which is implicitly being
accumulated and which allows us to assure some level of precision for the algorithm will come from a) the fact
that the model is assumed to have �nite memory and b) the parameter indexing the distribution of the data is
changing “slowly” such that, in some sense, past observations still contain relevant information about the current
value of the time-changing parameter. �e algorithms we propose in Chapter � and Chapter � can be seen as
Stochastic Approximation algorithms and we develop techniques to study several di�erent tracking problems.

Stochastic approximation algorithms form a generic class of stochastic procedures for optimising functions
in a stochastic setting.�ey were introduced into the literature in the ���� by Herbert Robbins and Sutton Monro
[��] who were interested in the problem of �nding the root of a function which is observed with noise. Below we
recall the classical setting of Robbins and Monro.

Suppose that for some known value α in the range of a non-decreasing function M we want to solve the
equation M(x) = α, which is assumed to have a unique solution at x = θ.�e function M cannot be observed
directly but instead we observe Y(x) with distribution function H(y�x) such that EY(x) = M(x).�e simplest
example is

Y(x) = M(x) − α + ξ,
where ξ is mean zero random noise. �e naı̈ve approach to this problem would be to attempt to use Newton’s
method and make successive observations according to

xn+� = xn − Y(xn) − α
M′(xn) , n ∈ N�,
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for some initial x�, assuming the derivative of M exists, is known and M′(θ) ≠ �. As pointed out in [��], even
under these generous assumptions, this would would result in

xn+� = xn − M(xn) − α
M′(xn) − ξn

M′(xn) .
�is means that if xn were to converge to θ such that M(xn)→ α and M′(xn)→ M′(θ) then this would imply
that ξn → � which is not a realistic assumption in many contexts (e.g., for i.i.d. errors ξn with positive variance).

Consider instead, for a positive sequence an, the following recursive algorithm as proposed by [��],

Xn+� = Xn + an�α − Y(Xn)�, n ∈ N�, (�.��)

for n ∈ N� with X� arbitrary.�eMarkovChain (�.��) constitutes the Robbins-Monro algorithm and the following
result can be found in [��].

�eorem �.� (Robbins-Monro [��])
Let M(x) be a non-decreasing function such that M(θ) = α and such M′(θ) exists and is positive. Let Y(x) ∼
H(y�x) be a.s. uniformly bounded and such thatEY(x) = M(x). If an is a positive (non-increasing) sequence such
that

∞�
n=� an =∞ and

∞�
n=� a

�
n <∞,

then for the sequence (�.��) it holds that E(Xn − θ)� converges to zero as n goes to in�nity.

For a > � the sequence an = a n−� veri�es the conditions of the theorem.�e function G(α,Y(Xn), Xn) =
α − Y(Xn) is called a gain function and has a simple interpretation in (�.��): if Y(Xn) overshoots α then the
gain will be negative causing Xn to decrease; if Yn(Xn) undershoots α then the gain will be positive and Xn

gets increased. �e decreasing sequence an dampens the changes of the tracking sequence enough to ensure
convergence of the algorithm.

Di�erent gain functions lead to di�erent algorithms and a large numberof problems can be tackledby selecting
appropriate gain functions. Consider the problem of recursively estimating the maximum M(θ) of a function
M(x) with, as before, noisy observations Y(Xn) such that EY(x) = M(x).�e following algorithm is known as
the Keifer-Wolfowitz algorithm[��] and can be used for this purpose

Xn+� = Xn + an Y(Xn + bn) − Y(Xn − bn)
bn

, n ∈ N�, (�.��)

with X� arbitrary and where an and bn are decreasing sequences.

�eorem �.� (Kiefer-Wolfowitz [��])
Let M(x) be a convex function with a unique maximiser at x = θ. Let Y(x) ∼ H(y�x) such that EY(x) = M(x)
and such that E�Y(x)−M(x)�� is uniformly bounded. If an and bn are positive sequences which converge to zero
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as n goes to in�nity such that

∞�
n=� an =∞,

∞�
n=� an bn <∞ and

∞�
n=��anbn �� <∞,

then for the sequence (�.��) it holds that E(Xn − θ)� converges to zero as n goes to in�nity.

�e sequences an = n−� and bn = n−���, for example, verify the conditions of the theorem.
�ese algorithms have been extensively studied in the literature and the �eld of stochastic approximation has

grown quite a lot since its inception (cf. [��] for a review). In Chapters � and � we propose and study a rather
general stochastic approximation algorithm for the case where it is only assumed that the observations come
from a time series.

� .�� B������� S��������� & N��-P��������� , A������� E���������

Bayesian Statistics stems, in essence, from a di�erent view on how data are generated from models. In the clas-
sical, frequentist, paradigm, data are assumed to be generated according to a �xed distribution in the model.
�is is intimately connected with the view of probabilities as limits of the frequency with which a certain event
takes place. In the Bayesian paradigm, however, all probabilities are viewed as degrees of belief, making them
intrinsically subjective. In our setup, where distributions in a model are indexed by parameters, this would make
each distribution a conditional law on the data given the parameter. In a sense, this means that the parameters
themselves are seen as random, in which case data would be generated from the model itself and not from a �xed
distribution. Inference then reduces to computing the conditional distribution of the parameter, given the data,
a task that can be performed via Bayes’ formula which we reproduce below.

To make it precise, consider a model P = {Pθ ∶ θ ∈ Θ} with each distribution Pθ admitting a density pθ .
Assume that we have a vector of i.i.d. observations, X(n) from the model P .�e Bayesian approach starts with
the selection of a prior measure Π on Θ (and so on P) which is then combined with the likelihood p(n)θ – seen
now as the conditional density of the data, given the parameter – leading to a posterior distribution Π(⋅�X(n))
via Bayes’ formula:

Π�T �X(n)� = ∫T p(n)θ �X(n)� dΠ(θ)∫Θ p(n)θ �X(n)� dΠ(θ) (�.��)

for measurable sets T ⊆ Θ.
Our use of Bayes’ formula in this thesis will be pragmatic and in line with [��], in that we will use (�.��) while

still assuming that the data are being generated from a �xed model P�.�e prior measure encodes what is known
about the parameter before data is observed, for example, its range. Once data is observed, the formula (�.��)
prescribes how the prior should be updated to become a posterior measure.�e posterior, being a conditional
measure on the space Θ given the data X(n), can in principle be used for inferential purposes, say, to produce
Bayesian point estimates. Our treatment of Bayes’ formula is therefore essentially algorithmic in that we see it as
a means for making inference on the parameters; the prior will just be seen as a parameter of the algorithm.

If we are to produce estimators from a posterior measure, it is important to understand how such estimators
behave probabilistically, as the sample size grows. Under the assumption that the data are distributed according
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to some measure P�, we intuitively expect the posterior measure to concentrate around laws which are in some
sense close to P�; if we were then to draw a realisation from the posterior, this realisation would ideally be close
to θ� with high probability in much the same way that a realization from an estimator is expected to be close to
the parameter to be estimated.�is is indeed the case for parametric models under very mild assumptions on
the prior (cf. [��]), but the same is not necessarily true for non-parametric models. For non-parametric models,
the choice of the prior distribution plays a critical role in determining the asymptotic properties of the posterior
distribution and therefore of any Bayesian estimators (cf. [��, ��]).

Before we can talk about statements concerning distances between data or between distributions, we must
endow themodelP with ametric. For two densities pθ and p� with respect to some common dominatingmeasure
and θ , � ∈ Θ, de�ne the (squared) Hellinger metric,

h�(θ , �) = ��� −E�
�
pθ(X)�p�(X)�. (�.��)

Note that since we are working on a parametrized model, we ease the notation by writing h�(θ , �) instead of
h�(pθ , p�); we return to this point later. In [��], su�cient conditions on a prior Π are provided, under which the
corresponding posterior Π(⋅�X(n)) veri�es

Π�θ ∈ Θ ∶ h(θ , θ�) ≥ Mεn�X(n)�→ �, as n →∞, (�.��)

for large enoughM > �, in P�-probability,where h is theHellingermetric (�.��); we say that the posterior contracts
around θ� (or P�) at a rate εn, with respect to the metric h. �e interpretation of this convergence is that, as n
grows to in�nity, most of the mass in the (random) posterior measure will, in P� probability, be concentrated in
a Hellinger ball of radius of order εn around the distribution P�.

One can construct Bayesian point estimates with good frequentist properties from posteriors which verify
(�.��). �e posterior mean can be shown to be an εn-consistent estimator for θ� so long as the le�-hand-side
of (�.��) goes to zero fast enough as n goes to in�nity (cf. [��]). If one considers a Hellinger ball of radius Mεn,
centered at θ, in the support of the posterior, then the value θ̂ for θ which (nearly) maximises the posterior mass
in that ball is also an εn-consistent estimator for θ�; details can be found in [��]).

In many situations it might be di�cult to construct these point estimates directly since the posterior will not
have an analytic expression. �is happens whenever the integral in the denominator of the posterior measure
(�.��) is not tractable, which o�en happens for arbitrary priors. When working with parametric models, this
can sometimes be avoided by working with so-called conjugate priors – these are priors for which the resulting
posterior has a closed form distribution. Generally, this is almost never the case when applying Bayes’ formula
to non-parametric models, and we usually only obtain a posterior as a multidimensional integral. �is was a
grave drawback to non-parametric Bayesian Statistics until the development of sampling techniques likeMarkov
Chain Monte Carlo, abbreviated MCMC, from the work of [��] and [��]. We will present a brief summary of
these algorithms in Section �.��.

Su�cient conditions under which (�.��) can be shown to take place typically involve the Kullback-Leibler
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divergence and another Csiszár f- divergence, respectively,

K(θ , �) = −E� log �pθ(X)�p�(X)�, (�.��)

V(θ , �) = E� log� �pθ(X)�p�(X)�, (�.��)

and the corresponding Kullback-Leibler ball B(ε, θ�) = �θ ∈ Θ ∶ K(θ , θ�) ≤ ε�,V(θ , θ�) ≤ ε��. Let, on a metric
space (A, d), the covering number N(ε,A, d) be the minimal number of d-balls of radius ε > � needed to cover
a subset A ∈ A.�e following theorem can be shown to hold.

�eorem �.� (Posterior contraction [��])
Suppose that for two positive sequences εn ≥ ε̄n such that nε̄�n > � and εn → � as n →∞, setsΘn ⊆ Θ and constants
c�, c�, c�, c� > �, the following conditions hold:

logN�εn ,Θn , h� ≤ c�nε�n , (�.��)

Π(Θ�Θn) ≤ c�e−(c�+�)nε̄�n , (�.��)

Π(B(ε̄n , θ�)) ≥ c�e−c�nε̄�n . (�.��)

�en, for large enough M > �, Π�θ ∈ Θ ∶ h(θ , θ�) ≥ Mεn�X(n)�→ � as n →∞ in P�-probability.

Note that if some semi-metric d veri�es d(θ , θ�) ≤ h(θ , θ�) for all θ ∈ Θ such that h(θ , θ�) is small enough,
then for su�ciently large n we have {θ ∈ Θ ∶ d(θ , θ�) ≥ Mεn} ⊆ {θ ∈ Θ ∶ h(θ , θ�) ≥ Mεn} which implies that
under the conditions of�eorem �.�,

Π�θ ∈ Θ ∶ d(θ , θ�) ≥ Mεn�X(n)�→ �, as n →∞,

in P�-probability, for M as in�eorem �.�. Upper bounds on the metric h, and the discrepancies K and V , on
the other hand, are useful to express the conditions of the theorem in terms of simpler metrics – such as lp or Lp

metrics, depending on the type of parameter set we work with – which makes verifying the conditions simpler.
We elaborate on this in Chapters � and �.

A few words about the conditions of�eorem �.�. First note that these conditions do not, in principle, impose
constraints on the dimension parameter set Θ other than requiring it to admit a subset Θn – sometimes called
a sieve – with �nite entropy as prescribed by the entropy condition (�.��).�is means that this theorem may be
applied to parametric� models as well as to non-parametric models.

�e sieve Θn, or equivalently, the sub-model Pn = {pθ ∶ θ ∈ Θn}, can be seen as a sequence of good ap-
proximations for the true model P�.�e remaining mass condition (�.��) requires that the prior should be mostly
supported on such a set Θn. Another lower bound on the complexity of the approximating models is enforced
by the prior mass condition (�.��). Since θ� is an arbitrary point in Θ, one way to verify this condition is to pick a
set Θn which is appropriately dense in Θ, such that any θ� ∈ Θ B(ε̄n , θ�) captures enough prior mass; this makes
condition (�.��) more restrictive, however. Another possibility is to pick a larger sequence εn but this deteriorates

�For parametric models this theorem might deliver sub-optimal rates. �ere are slightly stronger conditions which remedy this
(cf. [��]).
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the rate.�is condition also suggests that it might be reasonable to pick priors that are in some sense uniform
over the parameter set Θ since the centre of the Kullback-Leibler ball is in principle arbitrary.

It is the interplay between these conditions that de�nes the range of rates which can be shown to be attainable
for a given prior. Alternatively, for a given rate, this interplay gives su�cient conditions for a prior to deliver that
rate.�is result serves then both as a statement about the asymptotical behavior of a �xed prior but can also guide
us in the construction of priors with good (frequentist) asymptotical properties.

�ere are several di�erent priors that can be put on non-parametric models; wemention but a few that we will
refer to again later on in this thesis. Perhaps the most straightforward prior we can consider on non-parametric
models is to take a process whose trajectories live, almost surely, on the parameter set Θ and then take the law
of such a process as a prior on Θ; these are called Stochastic process priors. Another possibility is to expand
the functions on the space Θ on a particular basis (e.g. Fourier, splines, wavelets, Bernstein polynomials); we
then consider either the full basis or a truncated basis (where only the �rst basis functions are taken) and put
a prior on the coe�cients of the chosen basis functions; these are usually re�ered to as random series priors. It
is also common to use link functions, smooth, increasing, bounded functions, which serve the purpose of map-
ping the range of a random process onto Θ. �ese can be used to enforce desired properties on the functions
on the support of the prior, such as positivity and boundedness, without having tomanipulate the process directly.

�e fact that any information about the parameter set may, in principle, be incorporated into a prior distribu-
tion is certainly an attractive feature,mainly in applications. Another reason whichmay account for the popularity
that Bayesian Statistics have gained in recent years, is the fact that it represents, in some sense, a uni�ed approach
to inference: any unknown parameters of the model are endowed with a prior and Bayes’ formula produces a
posterior which can be used to draw conclusions on the unknown parameters.�is makes, at least conceptually,
the construction of adaptive priors, for example, quite simple as we will see bellow. Obtaining point estimates also
becomes straightforward and the problem of establishing asymptotics for such estimates can o�en be reduced,
by use of consistency theorems such as the one above, to measure-theoretical considerations about the particular
prior measure being used and to studying the approximation properties of the sieves Θn.

�e problem of adaptive estimation, as seen in Section �.�, consists of performing estimation over a large
family of models of the type ΘA = �α∈AΘα where the order of the minimax rate rpn(Θα) for each model Θα is
potentially di�erent. If we knew that the data were distributed according to a parameter with regularity α in the
model Θα , we could pick an appropriate prior Πα and use the resulting posterior to derive an estimator which
achieves the rate rpn(Θα). For the examples seen in the previous paragraph, this choice would involve considering
a speci�c number of basis function depending on α, enforcing the values of the coe�cients on a basis to decay at a
certain rate depending on α, or simply picking processes whose trajectories match the regularity of the functions
in Θα . An adaptive estimator must however attain the rate rpn(Θα) when θ� ∈ Θα without knowledge of the
smoothness α; we also say it is rate-adaptive. If we know of a prior Πα whose respective posterior Πα(⋅�X(n))
contracts at a rate rpn(Θα) when the data comes from a model in Θα , then we may treat α itself as a unknown,
so-called hyper-parameter of the model, and endow it with a hyper-prior, in e�ect mixing the several priors Πα .
If the hyper-prior is chosen in an appropriate fashion, the resulting prior, which no longer depends on α, will
result in a posterior which attains the rate rpn(Θα). (In this case we refer to both the prior and the posterior as
being adaptive).
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� .�� M����� ����� M���� C���� S�������

As mentioned in the previous section, it is common in non-parametric Bayes for the normalization constant
of the posterior distribution (�.��) not to be known explicitly. In these cases one can use Markov Chain Monte
Carlo (MCMC) samplers to obtain approximate samples from the posterior, which can then be used to compute
Bayesian estimates. MCMC samplers are Markov chains constructed to have as stationary distribution a chosen
target distributionwhich is known only up to a constant.�ese samplers are closely related to simulated annealing
optimization procedures and acceptance-rejection methods [��].�e chain is started from an arbitrary state and
evolves according to the following procedure. Suppose that the current state of the chain is θ, and that the target
distribution admits a density f with a support whose elements all have the same dimension.�e next state of the
chain is determined in two steps: �rst, an arbitrary state, called a proposal, is generated from a �xed, yet arbitrary
distribution � ∼ g(⋅�θ), from which we can sample directly; secondly, this state is either accepted with probability

A(θ → �) =min��, f (�)g(θ��)
f (θ)g(��θ)� , (�.��)

in which case the next state of the chain is �, or rejected, in which case the next state of the chain is θ. It is
straightforward to check that the transition kernel which we just described is, under very mild assumptions,
reversible and has f as (unique) invariant, stationary density: it is su�cient (cf. [��]) to require the support of f
(call it supp f ) to be connected and for the support of the proposals to cover the support of f , i.e.

�
θ∈supp f

supp g(⋅�θ) ⊇ supp f .

It is clear from its de�nition that the probability (�.��) can be computed even if the density f is known only
up to a constant; in fact, we only need to be able to compute the ratios f (�)�g(��θ) up to a constant that does
not depend on θ.�e Markov chain whose kernel we just described represents the classical formulation of the
Metropolis–Hastings algorithm [��].

Using this mechanism, we can now sample from a posterior distributions, for example. One possibility is pick
g(��θ) = Π(�) in which case the ratio in (�.��) reduces to a likelihood ratio, namely,

A(θ → �) =min
���, p(n)� �X(n)�

p(n)θ �X(n)�
�� .

�is is a particular case of what is called an independent Metropolis–Hastings sampler since the proposals are
independent of the current state of the chain. Another popular choice are the so-called random walk Metropolis–
Hastings samplers: we take � = θ + σ ξ, where σ > �, ξ ∼ g(⋅), a zero mean distribution, symmetrical around the
origin. Proposed states are in this case perturbations of the current state and the acceptance probability becomes

A(θ → �) =min��, Π(��X(n))
Π(θ�X(n))� .

�e standard deviation σ becomes a parameter of the algorithm and typically needs to be picked according to
the dimension of the support of the target distribution.
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In this thesis, we also consider adaptive priors whose use we exemplify with both real and simulated data. As
mentioned in Section �.��, adaptation in the Bayesian setting is usually achieved by mixing di�erent priors, each
of which is optimal over a �xed model in the family.�is means that the support of such a posterior is the union
of spaces whose dimension might be di�erent and the sampler outlined above cannot be used. For such situations
we must employ so-called reversible jump Markov chain Monte Carlo samplers (cf. [��, ��]).

Reversible jumpMCMC samplers generalize the Metropolis–Hastings samplers presented above in the sense
that a) they allow for di�erent types of moves for the chain, each corresponding to a di�erent transition kernel
and b) the kernels are de�ned in a more general way such that moves between states with di�erent dimension
are possible. �e latter is the main point of interest of these samplers – their capability of producing samples
from adaptive posteriors. To set up a reversible jump MCMC sampler we may construct a countable number of
transition kernels. Generating the next element of the chain then has an extra step corresponding to selecting
which transition kernel to use. We present here a speci�c sampler driven by the generation of random numbers
which can be found in greater detail and generality in [��].

Suppose that the support of the target distribution is contained in the family of models Θ = �α∈AΘα ; call a
generic state of the chain (α, θα) where the subscript α indicates the model index, such that θα belongs to Θα ,
which is a spacewith dimension dα . We index eachdi�erent type ofmovewewish to consider by j ∈ J , a countable
set. Next,we pick probabilities p( j, α, θα) such that for each pair (α, θα),∑ j∈J p( j, α, θα) = �.�ese probabilities
are parameters of the sampler. Given the current state of the chain, (α, θα), the �rst step in producing the next
state is to select which type of move j ∈ J will be performed. �is is done at random according to p(⋅, α, θα).
Once a move type, say j, has been selected, we pick the next state of the chain by constructing a random proposal(β, �β) according to the j-th kernel – a proposal which, as before, will either be accepted or not. We construct
this proposal by �rst selecting two numbers rα , rβ ∈ N� such that rα +dα = rβ +dβ. We then generate two random
vectors u ∼ g j,rα(⋅) and v ∼ hj,rβ(⋅) of dimension rα and rβ, respectively, and take (β, �β) such that �β veri�es(�β , v) = ρ j(θα , u), where ρ j(⋅) is, for each j ∈ J , a di�eomorphism.�ese extra “dummy” coordinates u and
v are introduced to do what is known as dimension matching, allowing the chain to e�ectively jump between
two “augmented” states (α, θα , u) and (β, �β , v) of equal dimension. Once the jump has been performed, these
extra, auxiliary coordinates may be ignored. If again f represents the target density, this proposal is accepted
with probability

Aj�(α, θα)→ (β, �β)� =min��, f (β, �β) p( j, β, �β) hj,rβ(v)
f (α, θα) p( j, α, θα) g j,rα(u) � ∂(�β , v)

∂(θα , u) �� . (�.��)

If this proposal is accepted, then the chain jumps to the state (β, �β), otherwise remaining at state (α, θα). (�e
factor on the far right is the absolute value of the determinant of the Jacobianmatrix of the mapping ρ j). Note that
(�.��) generalizes (�.��).�is particular choice results in a Markov chain that is reversible and has f as stationary
distribution. We will present two concrete samplers in Chapters � and �.

� .�� O������ �� ���� T�����

Here we describe in a bit more detail the contributions contained in this thesis. Most of the content of the
remaining chapters of this thesis is based on [�–��]; some extra material was added to Chapters �, � and � which
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is not in the mentioned references.

� .�� .� P����� E��������� ��� C������� I������������ P������ P������

In Chapter � we treat a semi-parametric estimation problem: given an inhomogeneous Poisson process with a
periodic intensity function, estimate its period.We construct anM-estimator for the period; the intensity function
is treated as an in�nite-dimensional nuisance parameter. We establish the consistency of the estimator and in
passing address the issue of the identi�ability of the period, which for this problem cannot be taken for granted.
In the literature, the issue of the identi�ability of this parameter is mostly glossed over but we treat it here in
detail based on a study of the Ergodic behavior of the expectation of the criterion function used to de�ne the
M-estimator. We close this chapter by presenting two numerical studies.�e �rst is based on synthetic data. We
look into the performance of the estimator by comparing it with already existing estimators in the literature. In
the second study, we apply the estimator to a large, real data set of arrivals of calls to a bank’s call center which
we model as a Poisson process.�is chapter is based on [��].

� .�� .� B������� S�������� F�� I������������ P������ P��������

In Chapter � we continue the study of the call centre data set used in Chapter �. Having concluded that this data
has daily periodicity, we apply Bayesian non-parametric methods to estimate the daily intensity of the data.�is
is done by using the adaptive, spline based priors that we present in Chapter �.�e estimates are obtained via a
reversible jump Markov Chain Monte Carlo sampler designed speci�cally for these spline priors.�e analysis of
this dataset is used to illustrate the general theoretical results that we establish in this chapter.�ese results can
be used to make non-parametric inference on the intensity function of a Poisson process.�ey are formulated
in such a way that, when combined with already existing results about speci�c priors (such as the ones we prove
in Chapter �), they give upper bounds on the contraction rate of the resulting posteriors. We also obtain similar
results for general stochastic process priors, for when link functions are used and for when a prior is put on the
scale of the unknown intensity function. We exemplify the use of our results on two speci�c priors: the spline
prior used in our numerical study and a prior on monotonous functions based on the Dirichlet process. Our
results apply to situations when the full process is observed but also when only a discretized version of the process
is observed.�is chapter is an expanded version of [��].

� .�� .� A������� P����� ����� �� S������ ���� R����� K����

In Chapter �, we establish theoretical properties for priors constructed from splines with inhomogeneous knots
such as the ones used in Chapter �. More speci�cally, we consider priors obtained by endowing the number and
locations of the knots of the spline, as well as its coe�cients, with priors.�ese types of priors are widely used in
practice but contraction rates for them had not yet been established. We give su�cient conditions on hierarchical,
adaptive spline priors, such that the resulting posterior attains theminimax rate of contraction up to a logarithmic
factor.�ese spline priors can be used to make inference on a wide range of models. We give examples of speci�c
priors on the knots and coe�cients for which our conditions hold and do a numerical study to illustrate the
advantage of endowing the location of the knots with a prior when estimating spatially inhomogeneous functions.
�is chapter is based on [�].
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� .�� .� T������� �� C���������� Q��������

Chapter � contains results on quantile tracking.�e problem of regression consists of estimating the conditional
mean of a response variable given the values for predictors of this quantity. Quantile regression corresponds
to estimating a conditional quantile (e.g., the median) of the response variable, rather than its mean, resulting
in estimates that are more robust. By estimating quantiles of di�erent levels simultaneously, one can obtain a
comprehensive description of the response variable. In this chapter we assume data is collected sequentially, i.e., is
a time series, and we also allow for conditional dependences between the distribution of each observation and the
previous ones.�is a more general setting than that of just quantile regression based on independent observations
since we allow the quantile of interest to depend on the past of the time series. We propose a recursive algorithm
for approximating a quantile of our choice (not necessarily of a �xed level). Our main result is the derivation
of general non-asymptotical, uniform bounds on the approximation error of this tracking sequence. We specify
these bounds for di�erent variational setups for the quantile of interest, covering in particular the important case
of non-parametric quantile regression.�is chapter is based on material from [�] and [�].

� .�� .� T������� �� D������� P��������� �� � T��� S�����

We consider in Chapter � a general model, a time series with arbitrary memory that is allowed to depend on a
time varying, multivariate parameter; we propose an algorithm to track this dri�ing parameter. It is not required
for this growing statistical model to be known completely. Instead, we just assume that a gain function is available
which can be used to update an arbitrary approximation for parameter of interest based on a new observation
from the model and an appropriate step sequence.�is gain function can be used to de�ne a recursive algorithm
for tracking the dri�ing parameter. Our main result is similar to that of Chapter � a non-asymptotical, uniform
bound on the approximation error for this estimator. For di�erent variational setups for the dri�ing parameter we
specify how this error bound can beminimised by an appropriate choice of the step sequence of the algorithm.We
show how gain functions can be constructed for speci�c models and how our results generalize several classical
stochastic approximation algorithms in a setting where the parameter of interest is not static. Some concrete
examples are treated and we study in more detail an autoregressive model with dri�ing parameters. We also
present some numerical results.�is chapter is based on [��].
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Period Estimation for Cyclic

Inhomogeneous Poisson Processes

P������ ��������� are sometimes used to model periodic, time-varying phenomena. In this chapter we
propose and study a semi-parametric estimator for the period of a cyclic intensity function of an inhomogeneous
Poisson process. No parametric assumptions are made on the intensity function which is treated as an in�nite-
dimensional nuisance parameter. We propose a new family of estimators for the period of the intensity function,
address identi�ability and consistency issues and present simulations which demonstrate good performance of
the proposed estimation procedure in practice. We compare our method to competing methods on synthetic
data and apply it to a real data set from a call center.
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� .� I�����������

�e Poisson process is a widely used model for point or count data in temporal and spatial settings, for example
in areas such as communication, meteorology, seismology, hydrology, astronomy, biology, actuary sciences etc.
Sometimes the occurrence of the events exhibits an intrinsic periodic behavior which is modeled by a periodic
intensity function of the underlying Poisson process. In this paper we study the problem of estimating the period
of the intensity function of an inhomogeneous Poisson process. We propose estimators, apply them to simulated
and real data and study identi�ability and consistency in an asymptotic setting where the observation time, i.e.
the trajectory length of the inhomogeneous Poisson process, increases inde�nitely.

Estimating the period is an interesting and important problem in itself but it is also an essential ingredient for
non-parametric estimation of the intensity function. Existing methods for estimating the shape of the intensity
function are based on the knowledge of the period and one needs a reliable estimator of the period prior to
constructing a (non-parametric) estimator for the intensity function itself (e.g. [��–��, ��, ��]).�e estimation
problem can formally be stated as being a semi-parametric problemwhere we wish to estimate a one-dimensional
parameter (the period) in the presence of an in�nite-dimensional nuisance parameter (the intensity function).

�e literature about the speci�c problem of estimating the period is not abundant. Vere-Jones used a spectral
approach in [��] to create an estimator based on themaximumof the Bartlett periodogram; see [��]. A parametric
assumption is made in [��] about the shape of the intensity function and the proposed estimator performs well
only if the true intensity function has a shape similar to the assumed one, cf. [�].

In [��] and [��] the authors present a semi-parametric estimator. Here a trajectory of an inhomogeneous
Poisson process is partitioned into intervals of some �xed length. �e mean quadratic deviation between the
number of events in each interval and the mean number of events taken over all intervals is considered as a
function of the interval length. In [��] it is argued that this criterion function should have a local minimum
at the point corresponding to the period which gives a method for constructing an estimator. In [�], however,
some serious �aws of this estimator were discovered.�ere some modi�cations of the estimator from [��] and
[��] were proposed that perform better in practice but no theoretical results are presented for it. An extensive
comparative study of the above-mentioned methods (which is contained in Table �.�.� ahead), on simulated data
from a range of test intensity functions can be found in [�]. Even the most robust estimator did not produce
satisfactory results for all test functions simultaneously.

If one is to construct a more e�ective estimator, then it is important to understand why previous estimators
perform poorly in certain situations. �e estimators described above essentially work by detecting a value τ
such that a �xed Poisson point process pattern emerges in the data when considering a partition of the observed
trajectory into time intervals of length τ.While being natural, such an approachhas its limitations. Firstly, a pattern
will also emerge if a multiple of τ is considered. Secondly, the criterion function, based on whose minimization
the estimator is obtained, is not only minimized at the point τ corresponding to the period but also at any value α
such that themean number of Poisson events over time intervals of length α is �xed, raising issues of identi�ability.
As seen in [�], it is quite simple to design intensity functions for which the corresponding criterion function has
zeros at fractions of the period as well.

In this chapter, we present an alternative M-estimator for the period. To make our approach more �exible,
we introduce an auxiliary parameter T > � into the method and partition the observation time into blocks of
length T . For each block we then compare the number of events in the �rst θ time units and the last θ times



�.�. ESTIMATION PROCEDURES ��

units. �is will lead to a criterion function for which we can prove convergence to a limiting function whose
zeros are related to the unknown period in an explicit way.�e estimator is then de�ned as a near zero point of
this criterion function, as it converges to zero at the multiples of the period. One needs to make a proper choice
of the parameter T in the method to make sure the period is identi�able and the resulting estimator is consistent.
We discuss this issue in more detail in the next section, where we also propose a couple of di�erent practical
approaches how to choose this parameter. �e main idea is to exploit the fact that we can vary the auxiliary
parameter T and study the behavior of di�erent data-based functionals of the criterion function as functions of
parameter T .

�e paper is organized as follows. In Section �.� we describe our model, the assumptions and the estimators.
Section �.� addresses identi�ability and consistency, subsection �.�.� is dedicated to establishing the convergence
of the criterion function, subsection �.�.� to identi�ability of the period and subsection �.�.� concerns consistency.
�e last section, Section �.�, contains numerical results. First we perform the simulation study from [�] for our
estimator in subsection �.�.� and then we apply our estimator to a real data set in subsection �.�.�. �e �rst
�ve columns of Table �.�.� contain the simulation study from [�] for certain test intensity functions and the last
column shows the performance of our estimator for the same intensity functions.

� .� E��������� P���������

� .� .� P������������

We suppose that we observe a trajectory (Nt ∶ t ∈ [�, n)) of an inhomogeneous Poisson process N with intensity
function λ. In other words, N is a counting process with independent increments such that N� = � and for all
� < a < b, the increment Nb − Na has a Poisson distribution with parameter

� b

a
λ(t) dt.

From now on we assume that the intensity function λ is continuous, bounded away from both � and in�nity,
and τ-periodic for some τ > �, i.e. λ(τ + t) = λ(t) for all t ≥ �. �e number τ is assumed to be the minimal
period, i.e. there exists no σ < τ such that λ is σ-periodic as well. Note that the assumptions exclude the case of
constant λ, which is the case of a homogeneous Poisson process. Our goal is to estimate the parameter τ from
the observations (Nt ∶ t ∈ [�, n)), without knowledge about the shape of λ.

�e �rst step in the construction of our estimator is to �x an auxiliary number T > � and to split up the
observation time interval [�, n) into �n�T� intervals of equal length [(i − �)T , iT), i = �, . . . , �n�T�, possibly
disregarding the last smaller piece (here, as usual, �a� = max{k ∈ Z ∶ k ≤ a}). For each of these intervals, we
are going to compare the number of events occurring in the �rst θ ≤ T�� time units to the number of events
occurring in the last θ time units. By the basic properties of the Poisson process, the expected di�erence of these
two numbers is � (i−�)T+θ

(i−�)T λ(t) dt −� iT

iT−θ λ(t) dt. (�.�)

Now the periodicity of the function λ implies that integrals of λ over two di�erent intervals coincide if the length
of the intervals are both equal to the same multiple of the period τ, or if the intervals have equal length and they
are a multiple of the period apart.�ese simple facts imply that if T is such that (l − �)τ < T < lτ for some l ∈ N,
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then the quantity in (�.�) vanishes for θ equal to each of the values

� < T − (l − �)τ < τ < T − (l − �)τ < �τ < . . . < T − (l − k)τ < kτ < . . . . (�.�)

We will prove below (see�eorem �.�) that under appropriate assumptions on the auxiliary parameter T , these
are in fact the only points at which the function

ψn(θ , T) = ��n�T� �n�T��i=� �� (i−�)T+θ
(i−�)T λ(t) dt −� iT

iT−θ λ(t) dt�� (�.�)

vanishes for all n.
In view of this, we base our inference on a criterion function that estimates the function ψn from the data.

Speci�cally, we de�ne the random function Ψn on [�, T��] as follows:
Ψn(θ , T) = ��n�T� �n�T��i=� �N−i (θ , T) − N+i (θ , T)�� − N−i (θ , T) − N+i (θ , T),

where
N−i (θ , T) = N(i−�)T+θ − N(i−�)T

is the number of counts in the �rst θ time units of the interval [(i − �)T , iT), and, similarly,

N+i (θ , T) = NiT − NiT−θ

is the number of counts in the last θ time units of that interval.
�e proof of�eorem �.� below shows that Ψn indeed consistently estimates ψn, in the sense that, for �xed θ

and T , Ψn(θ , T) − ψn(θ , T) converges in probability to � as n goes to in�nity.

� .� .� P�������� ����� �-������ ��������� ����� ��� ������

In this section we suppose that we know a-priori that τ ∈ [a, b], where � < a < b < �a.�en if we pick an auxiliary
parameter value T ∈ (b, �a) we have that τ < T < �τ and T − τ > T − b > �. It will be shown below (see�eorem
�.�) that, under the technical condition that T�τ is irrational, the criterion function θ � Ψn(θ , T) converges in
probability, uniformly on [T − b, T − a], to a smooth, nonnegative function ψ that has a unique zero at the point
T − τ.�is observation motivates the de�nition of the estimator

τ̂n = τ̂n(T) = T − θ̂n , (�.�)

where θ̂n is a (near) minimizer of θ � �Ψn(θ , T)� on [T − b, T − a], i.e. a point such that

�Ψn(θ̂n , T)� ≤ inf
θ∈[T−b,T−a] �Ψn(θ , T)� + oP(�). (�.�)

Such a point always exists since the function θ � Ψn(θ , T) is almost surely a piece-wise constant function which
changes values only at �nitely many points. (�e oP(�) term can give some added �exibility).
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In Section �.�, we prove that τ̂n is a consistent estimator for the period τ, provided the ratio T�τ is irrational.
�is condition arises when studying the limit of the function ψn(θ , T) de�ned by (�.�), as n → ∞. �e limit
function ψ(θ , T) given below by (�.�) is found by relating ψn to the circle rotation R ∶ [�, τ) → [�, τ), R(x) =
x + T mod τ. It is well known that the ergodic behavior of this map depends on whether or not T�τ is rational;
see [��]. Although formally needed for the consistency proof, the condition that T�τ is irrational does not seem
to be an issue in actual computations. Simulations indicate that any choice T ∈ (b, �a) yields a proper estimator
for the period. Moreover, this issue can be avoided by randomizing the choice of T , for instance by taking it to
be uniformly distributed on (b, �a), independent of the data (Nt , t ∈ [�, n)), cf. Corollary �.� ahead.

Implementation of the outlined estimation procedure is rather straightforward. Figure �.�.� illustrates the
method for a simulated data example. We took a = �, b = �, and T = � and simulated a sample path of an
inhomogeneous Poisson process on the time interval [�, n] with n = ���T = ��� and intensity function

λ(t) = �.� + � cos(t), (�.�)

which has period �π.�e corresponding criterion function θ � Ψn(θ , T) is shown on the interval [�, �.�].�e
function is minimal at the point θ = �.����, which yields the estimate T − θ = �.���� for the period τ = �π with
an absolute error of �.����.
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Figure �.�.�: For each θ, the criterion function Ψn(θ , �) is an average discrepancy between Poisson counts on speci�c
intervals. By construction, if θ is close to θ� = T − τ discrepancies are low since we are comparing i.i.d. Poisson counts.
Asymptotically the criterion is minimized at θ� from which we can estimate τ since T is a parameter of our choice.
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� .� .� P�������� ������� �-������ ��������� ����� ��� ������

In many applications it is not possible, or undesirable, to assume a-priori that the period τ belongs to some given
compact interval.�is leads to the problem of choosing the parameter T in the estimation procedure described
above. In this section we propose alternative procedures which involve letting the auxiliary parameter T vary in
a certain range.�ese procedures only involve choosing appropriate upper and/or lower bounds for the range of
values for T being considered, which is less demanding. We propose two di�erent approaches. Both exploit the
fact that the function θ � �Ψn(θ , T)� has approximate zeros at the points given by (�.�).

A ��������� ������

Notice that if kτ < T < (k + �)τ for some k ∈ N, then, according to (�.�), the �rst positive approximate zero of
the function �Ψn(θ , T)� should be T − kτ. If we now denote the �rst positive approximate zero of θ � �Ψn(θ , T)�
by θ̂T , then plotting T against T − θ̂T should give a graph that approximately (for T > τ) looks like a staircase
function, with jumps at all multiples of the period, the jump height being always approximately equal to the
period as well.

Concretely, we propose the following procedure:

�. Choose lower and upper bounds � < δ < T̄ for the range of T ’s that will be considered.

�. For every T ∈ [δ, T̄], de�ne θ̂T =min argminθ∈[δ��,T��] �Ψn(θ , T)�.
�. Plot the function Fn ∶ [δ, T]→ [�,∞) de�ned by

Fn(T) = T − θ̂T . (�.�)

Among other things, we will prove in Section �.� that for every T such that T�τ is irrational and kτ < T <(k + �)τ for k ∈ N, Fn(T) converges in probability to kτ (cf. �eorem �.�). Hence for δ > � small enough and
T > τ, the function Fn will asymptotically look like the step function F(T) = �T�τ�τ.

�is provides a graphical method for estimating the period τ by reading o� the jumps heights and locations
from the graph of Fn. Figure �.�.� displays the graph of Fn for the real data set considered in Section �.�.�. In
practice one would compute Fn(T) for all T on a grid on an interval interval [δ, T̄].

If T < τ, then the function θ � �Ψn(θ , Tk)� has, at least in the limit, no zeros in the interval [δ��, Tk��].
�erefore, for points Tk on the T-axis of Figure �.�.� for which θ � �Ψn(θ , Tk)� is above a positive threshold on[δ��, Tk��], the point (Tk , �) is added to the graph instead of (Tk , Fn(Tk)). To determine the appropriate thresh-
old, it is informative to look at the minimal values of the criterion functionmn(T) =minθ∈[δ��,T��] �Ψn(θ , T)� as
well. In view of the results in Section �.�, mn(T) is expected to be away from zero for δ < T < τ as the limiting
function θ � �ψ(θ , T)� does not have zeros for T ∈ (�, τ). As soon as T exceeds τ, the minimal value mn(T)
should drop close to zero.

�e parameters δ and T̄ should therefore be chosen in such a way that the �rst is su�ciently small and the
second is su�ciently large to make sure the true value τ is between δ and T̄ . In fact, this can again be done by
looking at the graphs of the functions Fn and mn while varying the parameters δ and T̄ . As we have already
mentioned, the function mn(T) changes from being distinctly positive to approximately zero at T ≈ τ and stays
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there from that point on, while the function Fn(T) should have a staircase structure from that point so that
the stair width equals to its height. If δ is too big (and T > τ), we will see the function mn(T) close to zero
immediately at T = δ. If T̄ is not big enough, we will not see distinct stairs in the plot of the function Fn(T).

Simulations suggest that there is not much di�erence between the estimators of the period for di�erent values
of T as long as T ∈ (τ, �τ) and T is away from the endpoints τ and �τ, the same holds for the multiples of the
period.

A�������� ���� T

As we have already mentioned, our method is based on the fact that the criterion function Ψn(θ , T) has ap-
proximately the same zeros as the limiting function ψ(θ , T) de�ned by (�.�). �e bivariate limiting function(θ , T) � ψ(θ , T) will have zeros on the plane (θ , T) at all points on the lines de�ned by (�.�), i.e. θ = kτ and
θ = T − lτ for k, l ∈ N; see Figure �.�.� for the limiting criterion function corresponding to example (�.�). Notice
that the common zeros of ψ(θ , T�) and ψ(θ , T�) for di�erent T�, T� will only be on the horizontal lines θ = kτ,
k ∈ N, unless T� and T� are separated by a multiple of the period τ.

�e above observation brings us to the following idea. To avoid the issue of the choosing the parameter T ,
one can design another criterion function by averaging the criterion functions Ψn(θ , T) over a grid of values
for T . Pick a su�ciently large T̄ to make sure T̄ > τ, take a grid � ≤ T� < T� < . . . < Tm ≤ T̄ and consider
a function Mn(θ) = �

m ∑m
i=� �Ψn(θ , Ti)�. �eorem �.� ahead implies that if the Ti�τ are irrational (which can

again be accomplished by randomization for instance), thenMn converges in probability to the functionM(θ) =
�
m ∑m

i=� ψ(θ , Ti). If at least one distance between the values from the grid {Tk , k = �, . . . ,m} is not a multiple of
the period τ, then this limiting function has zeros only at multiples of τ.�erefore, the function Mn(θ) can be
used as a new criterion function.�e smallest (separated from zero by a positive value) argument of this function
will provide an estimator for the period τ.

�is method can for example be used on a portion of the trajectory of the inhomogeneous Poisson process, to
obtain a preliminary estimate for the periodwhich in turn allows the identi�cation of an interval [a, b] containing
the period and such that � < a < b < �a, as it is required in the construction of the estimator (�.�). Once such an
interval is chosen, one can use the rest of the data for the construction of the estimator (�.�).

Figure �.�.� shows the criterion Mn for the same simulated data example as in Section �.�.�, where we took
T̄ = ��, (n = ��� as before) and the uniform grid Tk = kT̄�m, k = �, . . . ,m, with m = ���.�e function is plotted
on the interval [�, T̄��]. We obtain in this case �.���� as preliminary estimator for τ.

� .� I�������������� ��� C����������

� .� .� U������ ����������� �� ��� ��������� ��������

In this section we establish the uniform convergence of the criterion function θ � Ψn(θ , T) to the limit function
θ � ψ(θ , T) de�ned by

ψ(θ , T) = �
τ � τ

�
�� t+θ

t
λ(s) ds −� t+T

t+T−θ λ(s) ds�� dt. (�.�)
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Limiting criterion function ψ(θ,T)
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Figure �.�.�: Contour plot of the function (θ , T) � ψ(θ , T) corresponding to λ(t) = �.� + � cos(t) on the set θ ≤ T��.
�is function is null over the horizontal lines θ = kτ and the oblique lines θ = T − kτ.
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Figure �.�.�: Example of a criterion function Mn(θ), which approximates the integrals of the function ψ(θ , T) depicted in
Figure �.�.� over horizontal lines, i.e. Mn(θ) ≈ ∫ Ψn(θ , T) dT .
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�eorem �.� (Uniform convergence of the criterion function)
For all T > � such that T�τ is irrational,

sup
θ∈[�,T��] �Ψn(θ , T) − ψ(θ , T)� P�→ �

as n →∞.

Proof: We write Ψn = Ψ�,n −Ψ�,n, where

Ψ�,n(θ , T) = ��n�T� �n�T��i=� ��N−i (θ , T)�� + �N+i (θ , T)���,
Ψ�,n(θ , T) = ��n�T� �n�T��i=� ��N−i (θ , T)N+i (θ , T) + N−i (θ , T) + N+i (θ , T)�.

Note that both the θ � Ψj,n(θ , T) are non-decreasing, càdlàg functions. For the limiting function ψ we have a
similar decomposition ψ = ψ� − ψ�, where

ψ�(θ , T) = �
τ � τ

�
�� t+θ

t
λ(s) ds�� dt + �

τ � τ

�
�� t+θ

t
λ(s) ds� dt

+ �
τ � τ

�
�� t+T

t+T−θ λ(s) ds�� dt + �
τ � τ

�
�� t+T

t+T−θ λ(s) ds� dt,
ψ�(θ , T) = �τ � τ

�
�� t+θ

t
λ(s) ds� t+T

t+T−θ λ(s) ds� dt+ �
τ � τ

�
�� t+θ

t
λ(s) ds� dt + �

τ � τ

�
�� t+T

t+T−θ λ(s) ds� dt.
�e functions θ � ψ j(θ , T) are non-decreasing as well as di�erentiable.

Suppose we establish that, for j = �, � and every �xed θ ∈ [�, T��],
Ψj,n(θ , T) P�→ ψ j(θ , T), as n →∞. (�.�)

�en the theorem would follow. Indeed, the point-wise convergence in probability, together with almost sure
monotonicity (also càdlàg) andmonotonicity and boundedness of the limitψ j(θ , T), imply uniform convergence
in θ. We skip the details of the proof of this fact since it can be proved exactly in the same way as the Glivenko-
Cantelli�eorem with the only di�erences that the (distribution) functions in the Glivenko-Cantelli�eorem
are bounded by � and the convergence is in almost sure sense.

�us, it remains to show (�.�). In what follows, we give the details for j = �, the other case is completely
analogous. By construction, the random variables N−i (θ , T) are independent Poisson variables with parameters

� (i−�)T+θ
(i−�)T λ(t) dt
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and the N+i (θ , T) are independent Poisson variables with parameters

� iT

iT−θ λ(t) dt.
It follows that Ψ�,n(θ , T) has expectation

ψ�,n(θ , T) = ��n�T� �n�T��i=� ��� (i−�)T+θ
(i−�)T λ(t) dt�� +� (i−�)T+θ

(i−�)T λ(t) dt
+ �� iT

iT−θ λ(t) dt�� +� iT

iT−θ λ(t) dt�.
We have

Ψ�,n(θ , T) − ψ�,n(θ , T) = ��n�T� �n�T��i=� ��N−i (θ , T)�� −E�N−i (θ , T)���
+ ��n�T� �n�T��i=� ��N+i (θ , T)�� −E�N+i (θ , T)���

and the centered variables appearing in each sum are independent and have a variance that is bounded by a �xed
polynomial function (of degree four) of

� (i−�)T+θ
(i−�)T λ(t) dt and � iT

iT−θ λ(t) dt.
Since θ ≤ T�� and λ is bounded and periodic, the latter quantities are uniformly bounded. By Chebychev’s
inequality, it now follows that

Ψ�,n(θ , T) − ψ�,n(θ , T) P�→ �

as n →∞.

To complete the proof (for j = �) it remains to show that, for any �xed θ ∈ [�, T��], ψ�,n(θ , T)→ ψ�(θ , T) as
n goes to in�nity. De�ne the map R ∶ [�, τ)→ [�, τ) by R(t) = (T + t)mod τ. Denoting iterations of R by Ri , i.e.
R� is the identity, R� = R, R� = R ○ R etc., we can then, by the periodicity of λ, write

ψ�,n(θ , T) = ��n�T� �n�T��i=� h(Ri−�(�), θ),
where

h(t, θ) = �� t+θ
t

λ(s) ds�� +� t+θ
t

λ(s) ds + �� t+T
t+T−θ λ(s) ds�� +� t+T

t+T−θ λ(s) ds.
It is well known (see for example [��]) that the condition that T�τ is irrational implies that the circle rotation R
is uniformly ergodic, and that its unique invariant measure on [�, τ) is given by normalized Lebesgue measure
on [�, τ).�erefore, by the uniform ergodic theorem ([��]),

ψ�,n(θ , T)→ �
τ � τ

�
h(t, θ) dt = ψ�(θ , T)
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as n →∞.�is completes the proof.

Remark �.� In the case where T�τ is not irrational the sequence of functions ψn still has a limit. If m is the least
common multiple of T and τ, then the rotation Ri(�) will have m�T elements that repeat themselves sequentially.
�e limit is the mean of the functions h(R�(�), θ), h(R�(�), θ), . . . , h(Rm�T−�(�), θ).
� .� .� I�������������� �� ��� ������

In this section we address the identi�ability issue.�e following theorem establishes that the points (�.�) are the
only zeros of the limiting function ψ(θ , T) de�ned by (�.�).

�eorem �.� (Zeros of the limiting criterion function)
Suppose T�τ is irrational.�en all zeros of the function θ � ψ(θ , T), θ ∈ (�, T), are the points θ such that either
θ is a multiple of τ, or T − θ is a multiple of τ.

Proof: As mentioned already in Section �.�.�, from the periodicity of λ it is easy to see that the function θ �
ψ(θ , T) has zeros in the points (�.�). In the remainder of the proof we show that there are no other zeros.

Let θ ∈ (�, T) be such that ψ(θ , T) = �.�en

� t+θ
t

λ(s) ds = � t+T
t+T−θ λ(s) ds (�.��)

for all t ∈ [�, τ], and hence, by periodicity, for all t ≥ �. If we successively take t = �, T − θ , �(T − θ), . . . in (�.��),
we see that � θ

�
λ(s) ds = � k(T−θ)+θ

k(T−θ) λ(s) ds (�.��)

for every k ∈ N. Observe that (�.��) implies that we also have

� t+T−θ
t

λ(s) ds = � t+T
t+θ λ(s) ds

for all t ≥ �. Successively taking t = �, θ , �θ , . . . gives
� T−θ
�

λ(s) ds = � T−θ+kθ
kθ

λ(s) ds (�.��)

for every k ∈ N.
Now de�ne the maps R�, R� ∶ [�, τ)→ [�, τ) by putting R�(t) = t + (T − θ)mod τ and R�(t) = t + θ mod τ.

�en by periodicity, relations (�.��) and (�.��) imply that

� θ

�
λ(s) ds = � Rk

� (�)+θ
Rk
� (�) λ(s) ds, � T−θ

�
λ(s) ds = � Rk

� (�)+T−θ
Rk
� (�) λ(s) ds

for all k ∈ N. Since T�τ is irrational, either (T − θ)�τ or θ�τ is irrational. Hence, by a well-known result from
ergodic theory [��], one of the orbits {Rk

i (�) ∶ k ∈ N} is dense in [�, τ). To complete the proof, we note that if
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the relation � a

�
λ(s) ds = � t+a

t
λ(s) ds

holds true for all t in a set that is dense in [�, τ), then a is a multiple of the period. Indeed, the function
g(t) = ∫ t+θ

t λ(s) ds is continuous which, together with the periodicity of λ, implies that the relation ∫ a
� λ(s) ds =∫ t+a

t λ(s) ds is in fact satis�ed for all t ≥ �. We can di�erentiate both sides of this relation with respect to t to
obtain that λ(t + a) = λ(t) for all t ≥ �.
� .� .� C����������

Using�eorems �.� and �.� and the standard theory for M-estimators, it is now straightforward to derive consis-
tency of the estimator (�.�).

�eorem �.� (Consistency of the M-estimator)
Let the estimator τ̂n(T) be de�ned by (�.�) with τ ∈ [a, b], � < a < b < �a, T ∈ (b, �a) and T�τ irrational, then
τ̂n

P�→ τ as n →∞.

Proof: In view of�eorem �.�, we are in a position to apply Corollary �.�.� of [��].�e theorem follows.

�e technical condition that T�τ should be irrational can be handled by randomizing the choice of parameter
T . Take T to be uniformly distributed on (b, �a), independent of observed process (Nt , t ∈ [�, n]), and denote
by A the event that T�τ is irrational.�en the preceding theorem implies that P(�τ̂n − τ� > ε �T)�A → �, almost
surely. Since P(A) = �, by taking the expectation of this relation, we derive the following corollary.

Corollary �.� Let the estimator τ̂n(T) be de�ned by (�.�) with τ ∈ [a, b], � < a < b < �a, T ∈ (b, �a) and let T
be uniformly distributed on (b, �a), independent of observed process (Nt , t ∈ [�, n]).�en τ̂n

P�→ τ as n →∞.

In Section �.�.�, we outlined a graphical procedure based on the random function Fn de�ned by (�.�).�e
following theorem describes the asymptotic behavior of this function.

�eorem �.� (Consistency of the step function)
Suppose that T�τ is irrational and kτ < T < (k + �)τ for k ∈ N.�en

Fn(T) P�→ kτ

as n →∞.

Proof: Let k ∈ N be such that kτ < T < (k + �)τ. It follows from �eorem �.� that the function θ � ψ(θ , T)
has �nitely many zeros in the interval [δ��, T��], the smallest one being T − kτ. Now partition [δ��, T��] into
�nitely many intervals Tj such that each interval contains exactly one zero of the function in its interior. De�ne
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auxiliary “estimators”
θ̂T , j = argmin

θ∈Tj
�Ψn(θ , T)�

Notice that θ̂T = min j θ̂T , j and by �eorem �.� we obtain that supθ∈Tj
�Ψn(θ , T) − ψ(θ , T)� P�→ � as n → ∞.

Since by construction the nonnegative, continuous function ψ(⋅, T) has a unique zero in the interior of Tj, it
follows by Corollary �.�.� of [��] that for every j, θ̂T , j converges in probability to the unique zeros of ψ(⋅, T) in
Tj. But then the estimator θ̂T converges in probability to the smallest positive zero of ψ(⋅, T), which is T − kτ.
�is implies that Fn(T)→ kτ in probability.

� .� E����������� R������

� .� .� S ��������� �����

To evaluate and compare the performance of our estimator, we run the same tests as in [�]. In that paper, the
authors generate inhomogeneous Poisson process trajectories for a collection of periodic intensity functions. A
number of test intensity functions is considered, varying shape, number of peaks, relative frequencies and relative
amplitudes of the harmonics which make up the test intensity function. We refer to [�] for the plots of the various
test intensity functions. �e period is then estimated on the basis of generated trajectories and the percentage
of estimates that fall within a ±��% range relative to the true value of the period τ (chosen to be τ = �� by the
authors) is taken as a measurement of the accuracy of considered estimation procedures. Most of the experiments
have ���� observations in approximately �� cycles of length ��. Besides, the authors implement the sensitivity
analysis with respect to the number of observations per cycle and the number of cycles observed.

Table �.�.� below reports the accuracy measurements (the percentage of estimates that fall within a ±��%
range relative to the true value of the period τ) for di�erent test function and di�erent estimators.�e rows in the
table refer to di�erent test functions and the columns to di�erent estimators. Table �.�.� extends the table given
in [�]: we added the results for our estimator τ̂n de�ned by (�.�) as the last column in the table.

�e �rst column corresponds to Vere-Jones’ parametric estimator from [��] based on periodogram. It is
a parametric estimator and its performance is not satisfactory if the true intensity function is not close to the
parametric family of functions considered in [��].�e next column summarizes the results for an M-estimator
τ̂n,max which is based on a certain modi�cation of the estimator τ̂n,min given in [��], its de�nition can also be
found in [�]. �is estimator clearly fails to perform well either when few periods are observed or when the
intensity function is not unimodal.�is could be related to identi�ability issues. Columns three and four contain
two “smoothed” versions of the estimator τ̂n,max described in [�]. �ey perform slightly better than τ̂n,max but
still unsatisfactory for a number of test functions, especially for harmonic functions with multiple peaks per cycle
(�b, �c, �d), or with varying relative amplitude (�a), or with varying number of points per cycle (�b, �c, �d). [�]
omit the performance numbers for the estimator τ̂n,min as, with the exception of test �d, none of the estimates
were within ��% of the true period.

According to [�], the most robust estimator among the ones they studied (periodogram, τ̂n,max, τ̂n,�, and τ̂n,�)
is τ̂n,�. But even the estimator τ̂n,� did not produce satisfactory results for all test function simultaneously. One
heuristic explanation of this is that the criterion functions on which those estimators are based may have other
minima di�erent from the multiples of the period.
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Intensity function Periodogram τ̂n,max τ̂n,� τ̂n,� τ̂n
�a Cosine ��� ��� ��� ��� ��
�b Square ��� �� �� �� ��
�c Sawtooth ��� ��� ��� ��� ���
�a � Steps ��� �� �� �� ��
�b � Steps ��� �� ��� �� ��
�c � Steps ��� �� �� �� ��
�a � Pk/Cycle ��� ��� ��� ��� ��
�b � Pk/Cycle � � �� �� ���
�c � Pk/Cycle � � �� �� ���
�d � Pk/Cycle � � �� �� ���
�a A��A� = exp(�.�) � � �� �� ���
�b A��A� = exp(�.�) � �� �� �� ���
�c A��A� = exp(�.�) � �� ��� ��� ���
�a min λ = � ��� ��� ��� ��� ���
�b min λ = �.� ��� ��� ��� ��� ��
�c min λ = �.�� �� �� �� �� ��
�a �� Pts/Cycle � � �� �� ���
�b �� Pts/Cycle � � �� �� ���
�c ��� Pts/Cycle � �� �� �� ���
�a �� Cycles � �� �� �� ���
�b �� Cycles � � �� �� ���
�c �� Cycles � � �� �� ���
�d � Cycles � � � �� ���

Table �.�.�: Accuracy (percentage within ±��%) of estimator (τ = ��).

Our criterion function is more strict in the sense that the results of Section �.� guarantee that, under mild
conditions on the parameter T , the multiples of the period are essentially the only zeros of the criterion function.
For our estimator τ̂n, we took T to be a uniformly generated number in a small neighborhood of �� for all test
intensity functions λ and use the same performance criterion (the percentage of estimates that fall within a ±��%
range relative to the true value of the period) as in the above mentioned paper for the sake of comparison.

�e last column of Table � shows that our estimator performs well for all test intensity functions including
the problematic ones, �b, �c, �d, �a, �b, �c and �d. Whenever the estimator fails to outperform the competing
estimators, it does so by a small margin and always provides comparable results – in these cases (�b, �a, �b, �c, �b,
�c) the intensities have a lot of self-similarity which would account for the fact that our estimator, which explores
discrepancies between non-congruent regions of the intensity function, drops in performance.�ese intensities
are, however, parametric and in cases close to being constant and therefore fall outside our setup anyway.

� .� .� R��� ���� �������

In this section we apply our methodology to a real data set. �is data was obtained from the S.E.E. Center
(http://ie.technion.ac.il/Labs/Serveng/) of the Faculty of Industrial Engineering and Management, Technion in
Haifa, Israel. It consists of counts for calls arriving at a bank’s �� hour a day call center in the United States of
America. Overall there are records ofmore than ��million events between the ��thMay ���� and ��th of October
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����.�ese events are recorded in �� second intervals with an average of �� calls per minute.
�e main appeal of using this particular data is that it comes from a situation where one could argue that

the ”true” period is in some sense known to be �� hours and so it o�ers a rare opportunity to actually quantify if
our estimator comes close to the ”true” value of the period or not; this is usually not possible unless the data is
simulated. Indeed, an extensive empirical study (cf. [��]) made on a similar data set for data collected within the
year of ���� indicates that the intensity with which these calls are received has daily periodicity. For our data set
the plot of the “step function” Fn given in Figure �.�.� con�rms this �nding.

For a more accurate estimate, we consider as given that τ ∈ [��, ��] = [a, b]. We then take T ∈ [b, �a] =[��, ��] as one and a half day or �� hours. For these choices, Figure �.�.� presents the criterion function on[�, ��] = [T − b, min(T − a, T��)].
�e point at which the value of the criterion function is closest to zero is found to be θ = ��.���� hours,

resulting in an estimate τ̂ = T − θ = ��.���� hours or �� hours and ��minutes.
�e estimator performs quite adequately even though for this real data some of our model assumptions can

be challenged. Indeed, by looking at the counts one can see that the call center receives a higher number of calls
during holidays. Also, due to technical di�culties, the call center was shut down for a few hours throughout
the time considered in our data set. Strictly speaking, these two facts violate the assumptions that the intensity
function is periodic and that the intensity function is bounded away from zero. Still, our method is in this case
robust enough to produce a reasonable estimate of the period.
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Figure �.�.�: Step function Fn(T) for the call center data. For each T , the smallest minimizer of ψ(⋅, T) on (�, T��] is
θT = T − �T�τ�τ. We plot T versus T − θ̂T , which is an approximation for the step function T � �T�τ�τ.�is provides a
graphical tool for selecting a reasonable value for T .�e picture suggests considering values for T roughly between �� and
��. For comparison, we add a grid of lines separated by �� units, the presumed period.
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3
Bayesian Smoothing for

Inhomogeneous Poisson Processes

W� ����� nonparametric Bayesian methods to study the problem of estimating the intensity function
of an inhomogeneous Poisson process. We show that a certain spline prior which we will discuss in depth in
the next chapter is computationally feasible and enjoys desirable theoretical optimality properties. We illustrate
its practical use by analysing the call centre count data from Chapter �. �eoretically we derive a new general
theorem on contraction rates for posteriors in the setting of intensity function estimation. Practical choices that
have to be made in the construction of our concrete prior, such as choosing the priors on the number and the
locations of the spline knots, are based on these theoretical �ndings. We show that when properly constructed,
our prior yields a rate-optimal procedure that automatically adapts to the regularity of the unknown intensity
function.
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� .� I�����������

In this chapter we focus on inhomogenous Poisson processes on the line with periodic intensity functions, which
are models for count data in settings with a natural periodicity.

Nonparametric Bayesian methods, which are used more and more in many di�erent statistical settings, have
so far only been used on a limited scale to analyze suchmodels. From the applied perspective they can be attractive
for making inference about intensity functions, for the same reasons as they are appealing in other situations.
Estimating the intensity essentially requires some sort of smoothing of the count data and a nonparametric
Bayesian approach can provide a natural way for achieving this. Using hierarchical priors we can automatically
achieve a data-driven selection of the degree of smoothing. Moreover, Bayesianmethods provide a way to quantify
the uncertainty about the intensity using the spread of the posterior distribution. A typical implementation
provides a computational algorithm that can generate a large number of (approximate) draws from the posterior.
From this it is usually straightforward to construct numerical credible bands or sets.

�e relatively small number of papers using nonparametric Bayesian methodology for intensity function
smoothing have explored various possible prior distributions on intensities. An early reference is [��], who
consider log-Gaussian priors. Other papers employing Gaussian process priors, combined with suitable link
functions, include [�] and [��]. Kernel mixtures priors are considered in [��]. See also the related paper [��], in
which count data is analysed using spline-based priors.

�e cited papers show that nonparametric Bayesian inference for inhomogenous Poisson processes can give
satisfactory results in various applications. On the theoretical side however the existing literature provides no
performance guarantees in the form of consistency theorems or related results. It is by now well known that
nonparametric Bayes methods may su�er from inconsistency, even when seemingly reasonable priors are used
(e.g. [��]). �e purpose of this chapter is therefore to present a Bayesian approach to nonparametric intensity
smoothing that is both computationally feasible and at the same time theoretically underpinned by results on
consistency and related issues like convergence rates and adaptation to smoothness. Such theoretical results
have in the last decade been obtained for various statistical settings, including density estimation, regression,
classi�cation, dri� estimation for di�usions, etc. (see e.g. [��] for an overview of some of these results). Until now,
intensity estimation for inhomogenous Poisson processes has remained largely unexplored.

Asmotivation and starting point for treating this problem,we consider the analysis of the call center count data
from Chapter �. In the previous chapter we analysed this data and concluded that it presented daily periodicity.
�e same type of data were analyzed by frequentist methods in the paper [��]. We revisit the problem using a
nonparametric Bayesian method employing a spline-based prior on the unknown intensity function. In addition
to a single estimator of the intensity, this method provides credible bounds indicating the degree of uncertainty.
In Section �.� we study theoretical properties of our procedure, namely consistency, posterior contraction rates
and adaptation to smoothness.�e results show that we have set up our procedure in such a way that we obtain
consistent, rate-optimal estimation of the intensity and that the method adapts automatically to the unknown
smoothness of the intensity curve, up to the level of the order of the splines that are used.
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� .� A������� O� C��� C����� D���

� .� .� D��� ��� S���������� M����

�e approach we propose and study is motivated by the wish to analyze the dataset consisting of counts of
telephone calls arriving at a certain call center already considered in Chapter �. We consider the records for the
period from November �, ���� until December ��, ����, covering a total of about �.� million incoming phone
calls.�ese events are recorded in �� second intervals with an average of about �� calls per minute.�e raw data
are plotted in Figure �.�.�.
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Figure �.�.�:Number of incoming phone calls between November �, ���� and December ��, ����.

We model the full count data as the realization of an inhomogenous Poisson process N with an intensity
function λ that is periodic, the period being �� hours; we have already seen in Chapter � that this is a reasonable
assumption.�is Poisson assumption is also natural and is investigated in some detail in [��], who could not �nd
signi�cant evidence to the contrary in a similar dataset (same kind of data, but over a di�erent time period).

Let n be the number of days for which we have data (n = ��) and let τ be the period (�� hours).�en the full
call arrival counting process is given by N = (Nt ∶ t ∈ [�, nτ]), where Nt is the number of calls arriving in the
time interval [�, t]. �e Poisson assumption means that for every � ≤ s ≤ t, the number of arrivals Nt − Ns is
independent of the history (Nu ∶ u ≤ s) up till time s and that it has a Poisson distribution with mean

� t

s
λ(u) du.

We will assume throughout that λ is at least a continuous function.�e periodicity assumption then means that
λ is a τ-periodic function, i.e. λ(t + τ) = λ(t) for all t ≥ �. For i = �, . . . , n we de�ne the counting process
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N(i) = (N(i)t ∶ t ∈ [�, τ]) by
N(i)t = N(i−�)τ+t − N(i−�)τ , t ∈ [�, τ],

i.e. N(i) counts the number of arrivals during day i. Note that by the independence of the increments of the
process N , the processes N(i) are independent inhomogenous Poisson processes which have the restriction of λ
to [�, τ] as intensity function.

Our goal is to make inference about this function. Note that we do not observe the full process N . We only
observe it at discrete times, namely every �� seconds. On average about �� calls arrive in a �� second time interval,
so we really only see aggregated counts. Let ∆ be the time between observations (�� seconds) and letm = τ�∆ be
the number of counts per day that we have in our dataset (m = ���� in our case).�en for every i = �, . . . , n and
j = �, . . . ,m, the number of arrivals

Ci j = N(i)j∆ − N(i)( j−�)∆ (�.�)

in the jth time interval on day i has a Poisson distribution with parameter

λ j = � j∆

( j−�)∆ λ(t) dt. (�.�)

We denote the total available count data by Cn = (Ci j ∶ i = �, . . . , n, j = �, . . . ,m). It follows that the likelihood is
given by

pλ(Cn) = n�
i=�

m�
j=�

λCi j
j e−λ j

Ci j!
. (�.�)

In the following section we describe the prior we place on the intensity function λ.

� .� .� P���� �� ��� I�������� F�������

�ere are di�erent possible choices of priors for the function λ. A number of earlier considered options were
already mentioned in the introduction (Gaussian processes, kernel mixtures, splines). Our objective is to propose
a procedure which is computationally manageable on the one hand and with theoretical performance guarantees
on the other. Still, there will conceivably be more than one sensible choice meeting these requirements. For
our numerical study, we restrict ourselves to the investigation of the spline-based prior which was studied in
Chapter �.

�is free-knot spline prior is similar to priors considered earlier in di�erent contexts (see for instance [��,
��, ��], or, more recently [��] and the references therein). Such priors have proven to be numerically attractive
and capable of capturing abrupt changes in functions of interest. �is last point is relevant for our particular
application, since we expect �uctuations during the day due to the varying activity of businesses over the day.
Recently, several theoretical results were derived for spline-based priors in various settings as well (e.g. [��], [��],
[��], [�]). We will show in the next section that the procedure that we construct and implement has several
desirable theoretical properties.

Background information on splines can be found, for example, in [��] or [��]. We brie�y summarize the
notation and terminology. (For more detailed description see Chapter �.) A function is called a spline of or-
der q ∈ N, with respect to a certain partition of its support, if it is q − � times continuously di�erentiable
and when restricted to each interval in the partition, it coincides with a polynomial of degree at most q − �.
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Now consider q ≥ �. For any j ∈ N, such that j ≥ q let K j = {(k�, . . . , k j−q) ∈ (�, τ) j−q ∶ � < k� < ⋅ ⋅ ⋅ <
k j−q < �}. We will refer to a vector k ∈ K j as a sequence of inner knots. A vector k ∈ K j induces the partition�[k�, k�), [k�, k�), . . . , [k j−q , k j−q+�]� of [�, τ], with k� = � and k j−q+� = τ. For k ∈ K j, we denote by Sqk the linear
space of splines of order q on [�, τ]with simple knots k (see the de�nition of simple knots in, e.g., [��]).�is space
has dimension j and admits a basis of B-splines {Bq

k,�, . . . , B
q
k, j}.�e construction of {Bq

k,�, . . . , B
q
k, j} involves the

knots k−q+�, . . . , k−�, k�, k�, . . . , k j−q , k j−q+�, k j−q+�, . . . , k j, with arbitrary extra knots k−q+� ≤ � ≤ k−� ≤ k� = �
and τ = k j−q+� ≤ k j−q+� ≤ � ≤ k j. Usually one takes k−q+� = � = k−� = k� = � and τ = k j−q+� = � = k j, and we
adopt this choice as well. For k ∈ K j and θ ∈ R j we denote by sk,θ the spline in Sqk that has coe�cient vector θ
relative to the basis {Bq

k,�, . . . , B
q
k, j}, i.e.,

sk,θ(t) = j�
i=� θ iB

q
k, j(t), t ∈ [�, τ].

To de�ne the prior Π on λ that we use here we �rst �x the order q ≥ � of the splines that we use (cubic splines
are popular and correspond to the choice q = �) and the minimum and maximum intensities � ≤ M� < M�.�en
a draw from the prior Π is constructed as follows:

�. (Number of B-splines): Draw J ≥ q from a shi�ed Poisson distribution with mean µ.

�. (Location of the knots): Given J = j, construct a regular �� j�-spaced grid in (�, τ). �en uniformly at
random, choose j − q grid elements (without replacement) to form a sequence of inner knots k.

�. (B-spline coe�cients): Also given J = j, and independent of the previous step, draw a vector θ of j inde-
pendent, uniform U[M�,M�]-distributed B-spline coe�cients.

�. (Random spline): Finally, construct the random spline sk,θ of order q corresponding to the inner knots k
and with B-spline coe�cient vector θ.

�e speci�c choices made in the construction of the prior, like the Poisson distribution on J, choosing the
knots uniformly at random from a grid, etc., are motivated by the optimality theory that we derive in Section �.�.
�e theory shows that there is some more �exibility, but for choices too far from the ones proposed above
the performance guarantees brake down. Technically the prior on λ is the measure Π on the space C[�, τ] of
continuous functions on [�, τ] given by the law, or distribution of the random spline sk,θ described above.�e
splines in Sqk are q − � times continuously di�erentiable, hence in this sense the choice of q determines the
regularity of the prior. We will see in the next section that it also determines the maximal degree of smoothness
of the true underlying intensity to which our procedure can adapt. In applications like the one we are interested
in here, a sensible choice of the parameters M� and M� will typically be suggested by the average number of
counts per time unit in the data. In Section �.� we present other possibilities, such as putting a prior on these
parameters as well, in order to let their value be determined by the data automatically.�is is possible, but will
come at an additional computational cost.�e construction of the grid in step �. is non-standard compared to
other spline-based priors proposed in the literature. It is motivated by our results from Chapter � and will allow
us to derive desirable theoretical properties in the next section.
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� .� .� P�������� ���������

For the data described in Section �.�.�, with likelihood (�.�), and the spline prior Π described in Section �.�.�,
we implemented an MCMC procedure to sample from the corresponding posterior distribution of the intensity
function λ of interest. �e sampler we propose here is similar to the one seen in Chapter �. �e minimal and
maximal intensity parameters M� and M� were set to ��� and �����, respectively; these values were motivated
by the range of the data (time is measured in hours). We took the order q of the splines equal to �.

Since our prior is quite similar to the ones used previously in for instance [��] or [��] in regression or hazard
rate estimation settings, our computational algorithm is a rather straightforward adaptation of existing methods.
A generic state of the chain is a (�J − q + �)-dimensional vector � j, k, θ� where j ∈ N, j ≥ q is the model index,
k = k j ∈ (�, τ) j−q is a vector of inner knots and θ = θ j ∈ R j is a vector of B-spline coordinates. Together, these
index a spline sk,θ = sqk j ,θ j

∈ Sqk j
. We will abbreviate the corresponding posterior density by π� j, k, θ � Cn�. Since

the splines involved are easy to evaluate and integrate we can compute the likelihood, and then the posterior, up
to the normalization constant, e�ciently and without any approximations being needed.

We consider four di�erent types of moves for the MCMC chain, namely: a) perturbing the coe�cients θ, b)
moving the location of one knot in k, c) birth of a new knot and d) death of an existing knot. Each of these moves
is proposed, independently and respectively, with probabilities pa, pb, pc( j) and pd( j) where for each j ≥ q,
pa + pb + pc( j)+ pd( j) = �. In fact, we start by picking � < pa + pb < � as parameters of the algorithm; if µ is the
mean of the prior on J, then we take pc(q) = �− pa− pb, pd(q) = � and, for j > q, pc, j = (�− pa− pb)�−( j−q)�(µ−q)
and pd , j = (�− pa − pb)(�− �−( j−q)�(µ−q)).�is choice results in pc, j = pd , j if j = µ, pc, j > pd , j if j < µ, pc, j < pd , j
if j < µ.

When perturbing the coe�cients we perform simple (Gaussian) random walk MCMC steps; the standard
deviation of the randomwalk was chosen such that we obtained an acceptance rate of roughly ��% for this type of
move, as prescribed in [��]. Let φ j be the joint density of j i.i.d. standard normal random variables. Our proposals
correspond to a move � j, k, θ� → � j, k, ��, � = θ + σu, which we accept with probability min �A�( j, k, θ) →( j, k, �)�, ��, with

A�� j, k, θ�→ � j, k, ��� = π� j, k, θ + σu � Cn� paφ j(−σu)
π� j, k, θ � Cn� paφ j(σu) = π� j, k, � � Cn�

π� j, k, θ � Cn� .
Moving a knot is also straightforward; one of the current j − q knots, say ki , is picked uniformly at random

among those in k and we propose to change its location depending on how many of its neighboring position
on the j−�-spaced grid are free – we say that two knots k, k′ are neighbors if �k − k′� ≤ j−�.�is means that we
propose a move � j, k, θ�→ � j, κ, θ� where k and κ di�er only at the i-th position: if ki has two free neighboring
positions, then it moves to either of them with equal probability ci = ci(ki−�, ki , ki+�) = ���; if ki only has one free
neighboring position, then, with equal probability ci = ���, it eithermoves to this free position or it does notmove
at all; if ki has no free neighboring positions then it does notmove,with probability ci = �.�ese particular choices
assure the reversibility of the moves. We accept such a proposal with probability min �A�( j, k, θ)→ ( j, κ, θ)�, ��
for

A�� j, k, θ)→ ( j, κ, θ�� = π� j, (k�, . . . , k′i , . . . , k j−q), θ � Cn� pb ( j − q)−� ci
π� j, (k�, . . . , ki , . . . , k j−q), θ � Cn� pb ( j − q)−� ci = π� j, κ, θ � Cn�

π� j, k, θ � Cn� .
Birth moves and death moves, where a new knot is respectively added and removed, are reverse moves of one
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another and so we will outline only how to perform the birth move. We propose a move � j, k, θ�→ � j + �, κ, ��
where we add a new knot to the vector k and a new coe�cient to the vector θ. In doing so, a new B-spline is
introduced to the B-spline basis and a new B-spline coe�cient is generated.�e new knot vector κ contains all
knots from k rounded to the closest grid point on a ( j+�)−� spaced grid with the extra knot then picked uniformly
at random among the remaining free positions; call it ki−� < k′ < ki . Note that this construction does not prevent
two knots in κ from occupying the same position; such knot vectors have posterior probability �, though, so that
the probability of moving to such a state is zero.�e coe�cients on this basis are then picked as � = f (θ , u) =(θ�, . . . , θm−�, u, θm , . . . , θ j) where f is linear and invertible, and u is a random seed, a normally distributed
random number with mean η(θ), to be picked later, and variance �.�e new knot will belong to the support of q
B-splines, namely the i-th through (i+q− �)-th B-splines and we pick the indexm in {i , . . . , i+q} depending on
the knot’s position within the interval [ki−�, ki]; namelym = i + �(q+ �)(k′ − ki−�)�(ki − ki−�)�.�e mean of the
random seed u will be picked as a weighted mean of the coe�cients θ, namely, η(θ) = ∑m−�

i=� wiθ i +∑ j
i=m wi−�θ i ,

where the weights wi are normalized and

wi ∝ � τ

�
Bκ
m(t)Bk

i (t) dt, i = �, . . . , j + �.
With probability min �A�( j, k, θ)→ ( j+�, κ, �)�, ��wemake themove � j, k, θ�→ � j+�, κ, ��, with � = f (θ , u)
and κ = (k�, . . . , ki−�, k′, ki , . . . , k j−q), where

A�� j, k, θ�→ � j + �, κ, ��� = π� j + �, κ, � � Cn� pd , j+� ( j − q + �)−�
π� j, k, θ � Cn� pc, j ( j� − j + q)−�φ�(u) �J f �

where �J f � is the Jacobian of the linear mapping described before.
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Figure �.�.�: Top panel: posterior distribution of the intensity function λ based on the thinned data. (Blue: posterior mean,
red: point-wise ��% credible intervals). Lower panel: posterior distribution of the knot locations (Histogram).

Figure �.�.� summarizes the outcome of the analysis. In the top panel it shows the posterior and ��% point-
wise credible intervals, based on ��,��� draws from posterior.�e lower panel shows a histogram for the locations
of the knots corresponding to the samples from the chain used to generate the top panel. Note that as expected,



�� CHAPTER �. BAYESIAN SMOOTHING FOR INHOMOGENEOUS POISSON PROCESSES

relatively many knots are placed in periods in which there are relatively many �uctuations in the intensity.
Due to the large event rate (almost �million counts in total), the credible bands are very narrow. To illustrate

the dependence on the amount of data we ran the analysis again with a thinned dataset. We thinned the data
by randomly removing counts, retaining about �, ��� counts.�e same analysis then leads to the posterior plot
given in Figure �.�.�. In this case, the uncertainty in the posterior distribution becomes clearly visible.
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Figure �.�.�: Top panel: posterior distribution of the intensity function λ based on the data. (Blue: posterior mean, red:
point-wise ��% credible intervals). Lower panel: posterior distribution of the knot locations (Histogram).

We �nd that the prior that we de�ned in Section �.�.� is a computationally feasible choice for nonparametric
Bayesian intensity smoothing in the context of this kind of periodic count data. In the next section we analyze its
fundamental theoretical performance. See in particular�eorem �.� in Section �.�.�.

� .� T���������� �������

� .� .� C���������� ����� ��� ������� ������

We derive our theoretical results for the particular prior that we used in the Section �.� from general rate of
contraction results that we present in this section.�ese are in the spirit of the general theorems about conver-
gence rates of nonparametric Bayes procedures that were �rst developed for density estimation ([��]) and later
for various other statistical settings, see for instance [��], [��], [��]. Here we complement this literature with
general rate results regarding intensity estimation for inhomogenous Poisson processes. �ese results are not
only applicable to the spline priors we consider in this chapter, but may also be used to analyze contraction rates
of other priors. Moreover, we formulate the theorems not just for the case that we have discrete observations of
aggregated data, as in our data example, but also for the case that the full counting process is observed.

�e setting is as in Section �.�.�. We �x a period τ > �. In the full observations case we assume that for
n ∈ N, we observe an inhomogeneous Poisson process Nn = (Nn

t ∶ t ∈ [�, nτ]) up to time nτ, with a τ-periodic
intensity function λ. Equivalently, we can say that we observe n independent inhomogeneous Poisson processes
N(�), . . . ,N(n), indexed by [�, τ], andwith a common intensity function λ, which is a positive, integrable function
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on [�, τ]. It is well known that the law of N under the intensity function λ is equivalent to the law of a standard
Poisson process and that the corresponding likelihood is given by

pλ(Nn) = e− ∫ nτ
� (λ(t)−�) dt+∫ nτ

� log�λ(t)� dNn
t

(see for instance [��]). We consider prior distributions that charge strictly positive, continuous functions. Given
such a prior Πn on λ (which we allow to depend on n) we can then compute the corresponding posterior distri-
bution Πn(⋅ � Nn) by Bayes’ formula

Πn(λ ∈ B � Nn) = ∫B pλ(Nn)Πn(dλ)∫ pλ(Nn)Πn(dλ) .
Formally we can view the prior Πn as a measure on the space Λ ⊂ C[�, τ] of all continuous, strictly positive
functions on [�, τ], endowed with its Borel σ-�eld. If we endow Λ with the uniform norm, then the likelihood is
a continuous function on Λ. Hence, the posterior is a well-de�ned measure on Λ.

�e following theorem considers the frequentist setting in which the data are assumed to be generated by an
unknown, “true” intensity function λ�. It gives conditions on the prior Πn under which the posterior Πn(⋅ � Nn)
contracts around the true λ� at a certain rate as the number of observed periods tends to in�nity.�e assumptions
and conclusions of the theorem are formulated in terms of various distances on the intensity functions. For a
continuous function f on [�, τ] we de�ne the norms � f �� and � f �∞ as usual by

� f ��� = � τ

�
f �(t) dt, � f �∞ = sup

t∈[�,τ] � f (t)�.
For a set of positive continuous functions F we write F c for its complement and

√F = {� f ∶ f ∈ F}. For ε > �
and a norm � ⋅ � on F , let N(ε,F , � ⋅ �) be the minimal number of balls of � ⋅ �-radius ε needed to cover F .
�eorem �.� (Contraction rate for full observations)
Assume that λ� is bounded away from �. Suppose that for positive sequences ε̃n , ε̄n → � such that n(ε̃n ∧ ε̄n)� →∞
as n →∞, and constants c�, c� > � it holds that for all c� > �, there exist subsets Λn ⊂ Λ and a constant c� > � such
that

Πn(λ ∶ �λ − λ��∞ ≤ ε̃n) ≥ c�e−c�nε̃�n , (�.�)

Πn(Λc
n) ≤ e−c�nε̃�n , (�.�)

logN(ε̄n ,√Λn , � ⋅ ��) ≤ c�nε̄�n . (�.�)

�en for εn = ε̃n ∨ ε̄n and all su�ciently large M > �,
Eλ�Πn(λ ∈ Λ ∶ �√λ −√λ��� ≥ Mεn � Nn)→ � (�.�)

as n →∞.
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�e proof of this theorem is given in Section �.�.�.�e assumptions of the theorem parallel those of similar
theorems obtained earlier for other settings including density estimation, regression, and classi�cation.�e �rst
condition (�.�), the so-called prior mass condition, requires that the prior puts su�cient mass near the truth.
Conditions (�.�)–(�.�) together require that most of the prior mass, quanti�ed in the sense of the remaining mass
condition (�.�), is concentrated on sieves Λn which are “small” in the sense of metric entropy, quanti�ed by the
entropy condition (�.�).

�e proof of the theorem shows that conditions (�.�)–(�.�) can in fact be slightly weakened, at the cost of
using more complicated distance measures on the intensities.�e conditions in the theorem are easier to work
with when studying concrete priors and are expected to give sharp results in many cases. We note that if under
the prior all intensities are bounded away from �, then the set

√
Λn in (�.�) may be replaced by Λn. Moreover, if

all intensities are uniformly bounded by a common constant under the prior, then the square-root norm �√⋅��
in (�.�) may be replaced by the L�-norm � ⋅ �� itself. In the next section we verify the conditions of the theorem
for the spline priors used in Section �.�.�.

In the discrete observations case we only observe, for some m ∈ N and ∆ = τ�m, aggregated counts Ci j for
i = �, . . . , n and j = �, . . . ,m, given by (�.�). As before, we summarize these data using the notation Cn = (Ci j ∶
i = �, . . . , n, j = �, . . . ,m). As explained in Section �.�.� the likelihood is in that case given by (�.�), where the λ j’s
are de�ned as in (�.�). Consequently, the discrete-observations posterior is given by

Πn(λ ∈ B � Cn) = ∫B pλ(Cn)Πn(dλ)∫ pλ(Cn)Πn(dλ) .
In this case it is clear that we can not consistently identify the whole intensity function λ from the data, but only
the integrals λ�, . . . , λm. In the following theorem, which deals with the convergence of the posterior distribution
in the case of discrete observations, we therefore measure the convergence using a semi-metric that identi�es
intensity functions with the same integrals over time intervals in which we make observations. For λ, λ′ ∈ Λ, we
de�ne the semi-metric ρ by setting

ρ�(λ, λ′) = m�
j=� �
�

λ j −�λ′j�� = m�
j=� ��� j∆

( j−�)∆ λ(t) dt���� − �� j∆

( j−�)∆ λ
′(t) dt������.

�e theorem has exactly the same assumptions on the prior as�eorem �.� above, but gives a contraction rate
relative to the distance ρ.�e proof of the theorem is given in Section �.�.�.

�eorem �.� (Contraction rate for discrete observations)
Assume that λ� is bounded away from �. Suppose that for positive sequences ε̃n , ε̄n → � such that n(ε̃n ∧ ε̄n)� →∞
as n →∞, and constants c�, c� > � it holds that for all c� > �, there exist subsets Λn ⊂ Λ and a constant c� > � such
that (�.�)–(�.�) hold.�en for εn = ε̃n ∨ ε̄n and all su�ciently large M > �,

Eλ�Πn(λ ∈ Λ ∶ ρ(λ, λ�) ≥ Mεn � Cn)→ �

as n →∞.
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�e requirement that Πn must charge only positive functions ensures that such a prior may be seen as a
measure on Λ, the space where the “true” intensity λ� lives. �is can be easily enforced in our spline prior by
endowing the coe�cients of the B-splines with priors that put mass only on the positive reals. It is o�en the case
though, that priors on non-parametric spaces are taken as the law of a stochastic process. If we would like to use a
process whose trajectories are not necessarily positive, then we can apply to the process a so-called link function
to map their range. We can then extend the previous results to general stochastic process priors de�ned as the law
ofΨ(W) for some strictly increasing link functionΨ ∶ R→ (�,∞) and a stochastic processW = (Wt ∶ t ∈ [�, τ]).
LetWn be a stochastic process with square integrable sample paths. In the literature there are various results for
stochastic process priors that assert or imply that under certain conditions, for sequences ε̃n , ε̄n → � such that
n(ε̃n ∧ ε̄n) →∞, constants c�, c� > � and w� ∈ L�[�, τ], it holds that for every c� > � there exist measurable sets
Bn ⊂ L�[�, τ] and a constant c� > � such that

P(�Wn −w��∞ ≤ ε̃n) ≥ c�e−c�nε̃�n , (�.�)

P(Wn �∈ Bn) ≤ e−c�nε̃�n , (�.�)

logN(ε̄n , Bn , � ⋅ ��) ≤ c�nε̄�n . (�.��)

�e following theorem, whose proof can be found in Section �.�.�, is formulated in such a way that it directly
links�eorems �.� and �.� above to these existing results, so that we can easily obtain rate of contraction results
for many concrete priors.

�eorem �.� (Contraction rates for stochastic process priors)
Let the prior Πn be the law of Ψ(Wn), for Ψ ∶ R → (�,∞) an increasing, di�erentiable function such that both Ψ
and the derivative of logΨ are bounded, andWn = (Wn(t) ∶ t ∈ [�, τ]) is a stochastic process with square integrable
sample paths. Suppose that for sequences ε̃n , ε̄n → � such that n(ε̃n ∧ ε̄n)� → ∞ and constants c�, c� > � it holds
that for every c� > �, there exist sets Bn ⊂ L�[�, τ] and a constant c� > � such that, for w� ∈ L�[�, τ] such that
λ� = Ψ(w�), conditions (�.�) – (�.��) hold.�en for εn = ε̃n ∨ ε̄n and all su�ciently large M > �, the conclusions of
�eorems �.� and �.� remain valid.

�e theorem assumes implicitly that Ψ is bounded and that λ� = Ψ(w�) for some (necessarily unique)
function w�. Clearly, we must then have �λ��∞ ≤ �Ψ�∞. Since λ� is unknown, the only way to ensure that this
holds in practice is to assume a known uniform bound M on the unknown intensity function and then choose a
link function Ψ such that �Ψ�∞ ≥ M.

Since such an assumption may be undesirable in certain cases, it is of interest to devise ways to avoid it. One
possibility is to use a rescaling factor for a �xed link function, and endowing this factor with an additional prior.
�eorem �.� shows that as long as the tails of the prior on the scaling factor are appropriately thin, there is no
loss in terms of rate.

�eorem �.� (Contraction rates for rescaled stochastic process priors)
Let the prior Πn be the law of M + AΨ(Wn), for Ψ ∶ R → (�, �) an increasing, di�erentiable function such that
both Ψ and the derivative of logΨ are bounded, a constant M > � such that λ� > M, Wn = (Wn(t) ∶ t ∈ [�, τ]) a
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stochastic process with square integrable sample paths, and A an independent (�,∞)-valued random variable with
a positive, continuous Lebesgue density.

Suppose that for sequences ε̃n , ε̄n → � such that n(ε̃n ∧ ε̄n)� � log n and constants c�, c� > � it holds that for
every c� > � there exist sets Bn ⊂ L�[�, τ] and a constant c� > � such that, with w� ∈ L�[�, τ] and c ≥ � such
that λ� = M + c�λ� −M�∞Ψ(w�), conditions (�.��) – (�.��) are satis�ed and in addition there exists a polynomial
sequence an(c�) such that

P(A > an(c�)) ≤ e−c�nε̃�n .
�en there exists a constant C > � such that for εn = ε̃n ∨ ε̄n and for all su�ciently large M > �,

Eλ�Π(λ ∶ �λ − λ��� ≥ Mεn � Nn)→ �

and
Eλ�Π(λ ∶ ρ(λ, λ�) ≥ Mεn � Cn)→ �

as n →∞.

�e proof of the theorem is given in Section �.�.�.
We have introduced constants ci > � and M in the assumptions of the theorem.�is is to have some more

�exibility when checking the conditions of the theorem for speci�c priors and underlying true intensity function
λ�. For Ψ−� the inverse of the link function, we have

w� = Ψ−�� λ� −M
c�λ� −M�∞ �.

Hence, if we assume for instance that the truth has Hölder regularity of order, α, say, then this caries over to w�

as soon as the restriction of Ψ−� to [(inf λ� −M)�(c�λ� −M�∞), ��c] has su�ciently many bounded derivatives.
Since the derivative of Ψ−� typically blows up at � and �, we have to assume that λ� is bounded away from M
in such a case and take c strictly larger than �. As mentioned before, assuming a lower bound on the intensity
function is not restrictive. It also allows us to claim that, by construction, the functions in the support of the prior
are uniformly bounded from zero.

In the next section we apply the theoretical results derived above to our spline prior.

� .� .� C���������� ����� ��� ��� ������ �����

Having the general rate of contraction results given by �eorems �.� and �.� at our disposal, we can use them
to study the performance of the spline-based priors outlined in Chapter � and in particular, the one de�ned in
Section �.�.�, in the context of estimating Poisson intensities. We �x the order q ≥ � of the splines that are used.
As before, let Nn be the a full path up till time nτ of an inhomogenous Poisson process N with τ-period intensity
λ� and let Cn be the discrete-time counts Cn = (Ci j ∶ i = �, . . . , n, j = �, . . . ,m), with Ci j as in (�.�).

�e contraction rate of the posterior will depend on the regularity of the true intensity function, measured in
Hölder sense. For α > �, letHα([�, τ]) be the space of functions on [�, τ] with Hölder smoothness α. (For �α�



�.�. THEORETICAL RESULTS ��

the greatest integer strictly smaller than α, having f ∈Hα([�, τ])means that f has �α� derivatives and that the
highest derivative f (�α�) is Hölder-continuous of order α − �α�.)
�eorem �.� (Contraction rate for the spline prior)
Assume the true intensity function λ� belongs toHα([�, τ]) for some α ∈ (�, q], and M� ≤ λ� ≤ M�. Consider the
prior Π constructed in Section �.�.�. For all p > � and all su�ciently large M > �,

Eλ�Πn�λ ∈ Λ ∶ �λ − λ��� ≥ M� n
logp n

�− α
�+�α � Nn�→ �

and
Eλ�Πn�λ ∈ Λ ∶ ρ(λ, λ�) ≥ M� n

logp n
�− α

�+�α � Cn�→ �

as n →∞.

Note that up to a logarithmic factor, the rate of contraction in the theorem is the optimal rate n−α�(�+�α) for
estimating an α-regular function. Moreover, the prior does not depend on α. Hence the procedure automatically
adapts to the smoothness of the intensity function, up to the order of the splines that are used.�is theorem deals
with the case that we have known bounds M� and M� for the intensity. If no upper bound is know then we can
take Ψ as an identity and use�eorem �.�. �e existence lower bound M� > � is not restrictive since it can be
enforced by adding a homogeneous Poisson process with known intensity to the data.

In Section �.�.� we present one last result. Instead of imposing smoothness conditions on the true intensity
λ� we can also consider shape restrictions.�is is a common practice in reliability analysis. Spline based priors
can be used for this purpose since an increasing vector of B-spline coe�cients results in an increasing spline
function (cf. [��]) but we consider, in the next section, priors based directly on the Dirichlet process.

� .� .� C���������� ����� ��� ���������� �����������

We assume in this subsection that λ� is a non-decreasing, continuous function. Decreasing intensities, which
arise for instance in certain applications in Poisson regression and reliability, can be handled analogously.

We employ a prior based on the Dirichlet process [��]. In other statistical settings it is known that when
properly constructed, Dirichlet-based priors can yield posterior convergence at the rate n−��� (up to a logarithmic
factor) when the truth is monotone. See for instance Section � of [��] for an example in the context of a current
status model or [��] for the estimation of a monotone dri� function in a di�usion model. We are not aware of
a lower bound on the rate for our model in the literature. We expect though that n−��� is (eventually up to a log
factor) the optimal rate.

�e proof of the following result can be found in Section �.�.�.

�eorem �.� (Contraction rate for Dirichlet prior)
Let the prior Π be the law of the process A + BD where D is a Dirichlet process on [�, �] with base measure which
has a positive, continuous Lebesgue density on [�, τ] and A and B are independent, positive random variables with
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positive and continuous densities, which are independent of D. Moreover, we assume that for x > � large enough,
P(A > x�) � P(B > x�) � e−cxex�� (�.��)

for some constant c > �. Let λ� be a non-decreasing, continuous function such that λ�(�) > � and λ�(τ) < ∞.
�en, for all su�ciently large M > �,

Eλ�Πn�λ ∈ Λ ∶ h(λ, λ�) ≥ M� n
log n

�−��� � Xn�→ �

as n →∞, for Xn either Nn or Cn.

We remark that if the tails of the variables A and B in the de�nition of the prior are heavier than the ones in
the condition of the theorem then we might still get a rate, but it will typically be sub-optimal. Indeed, inspection
of the proof of this result we can simply de�ne the radius Ln of the range of the functions in the sieve Λn as the
smallest number such that

P(A > Ln) � e−n��� log n , P(B > Ln) � e−n��� log n . (�.��)

�e prior and remainingmass conditions are still ful�lled with ε̃n ∼ (n� log n)−��� and the entropy condition with
ε̄n ∼ (n�√Ln)−���. So as long as Ln � n� we still obtain a rate, but it will be slower than (n� log n)−��� if (�.��)
does not hold. If the tails of A and B are only sub-exponential, for instance, then (�.��) holds for Ln ∼ n��� log n
and we only get the rate n−����, up to a logarithmic factor. For power-law tails we do not obtain a rate at all.

If in addition to the monotonicity, an a-priori upper bound L on λ� is assumed, then A and B can simply
be taken uniform on [�, L], for instance. We then obtain a rate (n� log n)−��� relative to the L�-norm on the
intensities for the posteriors Π(⋅ � Nn) and relative to the semi-metric ρ for Π(⋅ � Cn). Known lower bounds M
on λ� can also be incorporated into the prior by taking Π as the law of the process M + A+ BD with A+ BD as
in�eorem �.�.

� .� P�����

� .� .� P���� �� T������ � .�

Auseful observation is thatwe can view the statistical problem towhich the theorem applies as a density estimation
problem for functional data. Indeed, in the full observations case we observe a sample N(�), . . . ,N(n), which are
independent, identically distributed random elements in the Skorohod space D[�, τ] of càdlàg (right-continuous
functions with le�-hand limits) on [�, τ] (see [��], Chapter VI). Under the intensity function λ, the density pλ
of N(�) relative to the law of a standard Poisson process indexed by [�, τ] is given by

pλ(N) = e− ∫ τ
� (λ(t)−�) dt+∫ τ

� log(λ(t)) dNt

(e.g. [��], Chapter III). Hence, the density estimation results of [��], [��] apply in our case.



�.�. PROOFS ��

We want to apply�eorem �.� of [��]. �is gives conditions for posterior contraction rates in terms of the
Hellinger distance on densities and other, related, distance measures. �e Hellinger distance h(pλ , pλ′) is in
our case given by h�(pλ , pλ′) = �(� − Eλ′

�
pλ(N)�pλ′(N)), where Eλ is the expectation corresponding to the

probability measure Pλ under which the process N is a Poisson process with intensity function λ. �e other
relevant distance measures are the Kullback-Leibler divergence K(pλ , pλ′) = −Eλ′ log(pλ(N)�pλ′(N)) between
pλ and pλ′ and the related variance measure V(pλ , pλ′) = Vλ′ log(pλ(N)�pλ′(N)). For a Poisson process N
with intensity λ and a bounded, measurable function f ,

E� τ

�
f (t) dNt = � τ

�
f (t)λ(t) dt,

V� τ

�
f (t) dNt = � τ

�
f �(t)λ(t) dt,

Ee∫ τ
� f (t) dNt = e− ∫ τ

� (�−exp( f (t)))λ(t) dt .

Using these relations it is straightforward to verify that we have

h�(pλ , pλ′) = �(� − e− �
� ∫ τ

� ��λ(t)−�λ′(t)�� dt),
K(pλ , pλ′) = � τ

�
(λ(t) − λ′(t)) dt +� τ

�
λ′(t) log λ′(t)

λ(t) dt,
V(pλ , pλ′) = � τ

�
λ′(t) log� λ′(t)

λ(t) dt,
respectively.

�e following lemma relates these statistical distances between densities to certain distances between intensity
functions. We denote the minimum and maximum of two numbers a and b by a ∧ b and a ∨ b, respectively.
Lemma �.�
We have the inequalities

�√
�
���λ −√λ′�� ∧ �� ≤ h(pλ , pλ′) ≤√����λ −√λ′�� ∧ ��,

K(pλ , pλ′) ≤ ���λ −√λ′��� + V(pλ , pλ′),��λ −√λ′��� ≤ �
� � τ

�
(λ(t) ∨ λ′(t)) log� λ(t)

λ′(t) dt.
Proof:�e inequalities for h follow from the fact that (���)(x ∧ �) ≤ � − exp(−x��) ≤ x ∧ � for x ≥ �.

For the Kullback-Leibler divergence we have

K(pλ , pλ′) = � τ

�
λ′(t) f (λ(t)�λ′(t)) dt,

for f (x) = x − �− log x. By Taylor’s formula, � f (x)� is bounded by a constant times (√x − �)� in a neighborhood
of �. Since � f (x)� is bounded by �x� for x ≥ � and �x��(√x − �)� → � as x →∞, we have in fact � f (x)� ≤ �(√x − �)�
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for all x ∈ (��e ,∞), say. For (�, ��e) we have � f (x)� ≤ � log x�. It follows that
K(pλ , pλ′) ≤ ��

λ�λ′≥��e(�λ(t) −�λ′(t))� dt +�
λ�λ′≤��e λ

′(t)� log λ(t)
λ′(t) � dt.

�e �rst term on the right is bounded by ��√λ−√λ′���. For the second term we note that for λ�λ′ ≤ ��e, we have
log �λ�λ′� ≥ � and hence log �λ�λ′� ≤ log� �λ�λ′�.�e statement of the lemma follows.

To prove the last inequality, write �√λ −√λ′��� as the sum of an integral over the set {λ′ ≤ λ} and an integral
over the set {λ′ > λ} and use the fact that � − x ≤ � log x� for x ∈ (�, �].

To connect assumptions (�.�)–(�.�) to the corresponding assumptions of�eorem �.� of [��] we �rst note
that since λ� is bounded away from � and in�nity by assumption, the same holds for any λ ∈ Λ that is uniformly
close enough to λ�. Lemma �.� and the de�nition of V therefore imply that for λ uniformly close enough to λ�,
both K(pλ , pλ�) and V(pλ , pλ�) are bounded by a constant times the uniform norm �λ − λ��∞. It follows that
for n large enough, the Kullback-Leibler-type ball

B(εn) = {λ ∈ Λ ∶ K(pλ , pλ�) ≤ ε̃�n ,V(pλ , pλ�) ≤ ε̃�n} (�.��)

is larger than a multiple of the uniform ball {λ ∈ Λ ∶ �λ − λ��∞ ≤ ε̃n}. Lemma �.� also implies that the covering
number N(ε̄n , {pλ ∶ λ ∈ Λn}, h) is bounded by N(ε̄n�√�,√Λn , � ⋅ ��). Hence, assumptions (�.�)–(�.�) imply
that the conditions of�eorem �.� of [��] are ful�lled.�is theorem states that for M large enough, Eλ�Πn(λ ∶
h(pλ , pλ�) ≥ Mεn)→ �. To complete the proof, note that by the fact thatMεn ≤ � for n large enough and the �rst
inequality of the lemma, it holds, for n large enough, that �√λ−√λ��� ≥√�Mεn implies that h(pλ , pλ�) ≥ Mεn.

� .� .� P���� �� T������ � .�

�e proof is similar to the proof of�eorem �.�, but this time we start from the observation that in the discrete-
observations case, the data constitute a sample ofn independent, identically distributed randomvectorsC(�), . . . ,C(n)
in Rm, where

C(i) = (Ci�, . . . ,Cim)
and Ci j is given by (�.�).�e coordinates Ci j of C(i) are independent Poisson variables with mean λ j given by
(�.�).

Again we apply�eorem �.� of [��]. In this case the Hellinger distance hm, Kullback-Leibler divergence Km

and variance measure Vm are easily seen to be given by

h�m(λ, λ′) = �(� − e− �
� ∑��λ j −�λ′j��),

Km(λ, λ′) =�(λ j − λ′j) +� λ′j log
λ′j
λ j
,

Vm(λ, λ′) =� λ′j log�
λ′j
λ j
,

respectively. �ese quantities satisfy the same bounds as in Lemma �.�, but with the integrals replaced by the
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corresponding sums. Moreover, by expanding the square and using Cauchy-Schwarz we see that

���λ j −�λ′j�� ≤ ��λ −√λ′���,
and hence also

Vm(λ, λ′) ≤ �� λ′j
λ j ∧ λ′j �

�
λ j −�λ′j�� ≤ � �λ′�∞

inf t �λ(t)� ∧ inf t �λ′(t)� ��λ −√λ′���.
Using these relations the proof can be completed exactly as in Section �.�.�.

� .� .� P���� �� T������ � .�

Let λ� = Ψ(w�) for some function w� ∈ L�[�, τ] and λ = Ψ(w) for w in the support of the processW . Note that
for all a, b ∈ R, � logΨ(a) − logΨ(b)� = �� b

a

ψ(t)
Ψ(t) dt� ≤ �ψΨ�∞�a − b�.

Combining this with the bounds provided by Lemma �.�, we conclude

��λ −�λ���� ≤ �
�
�Ψ�∞�ψΨ��∞�w −w����.

Using this we can connect (�.�)–(�.��) to the corresponding assumptions of�eorem �.� of [��] in the same way
as we did for the previous two theorems and the result follows.

� .� .� P���� �� T������ � .�

Take λ = M +AΨ(w) forw in the support of the processWn and λ� = M + c�λ� −M�∞Ψ(w�) for some constant
c and function w� with M such that λ� > M. We consider �rst the case of continuous observations. First note
that �√λ −�λ��� ≤ �√λ −�M + c�λ� −M�∞Ψ(w)�� + ��M + c�λ� −M�∞Ψ(w) −�λ���.
We have for all a, b, u ≥ �,

�√M + au −√M + bu� = � b

a

u
�
√
M + tu dt ≤ u

�
√
M
�a − b�,

from which it follows that

�√λ −�M + c�λ� −M�∞Ψ(w)�� ≤ τ
�
√
M
�Ψ�∞�A− c�λ� −M�∞�

Also, for u ≥ � and a, b ∈ R,
��M + uΨ(a) −�M + uΨ(b)� = � b

a

uψ(t)
�
�
M + uΨ(t) dt ≤

√
u
�
� ψ√

Ψ
�∞�a − b�,
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implying

��M + c�λ� −M�∞Ψ(w) −�λ��� ≤ �c�λ� −M�∞
�

�ψ
Ψ
�∞�w −w���.

We also have
V(pλ , pλ�) ≤ (M + c�λ� −M�∞)�Ψ�∞� τ

�
log�

λ�(t)
λ(t) dt.

Proceeding in the same way as before, for a, b, u ≥ �,
� log(M + au) − log(M + bu)� = � b

a

u
M + tu dt ≤ u

M
�a − b�,

and for u ≥ �, a, b ∈ R,
� log(M + uΨ(a)) − log(M + uΨ(b))� = � b

a

uψ(t)
M + uΨ(t) dt ≤ �ψΨ�∞�a − b�,

which give, respectively,

� τ

�
log�

λ(t)
M + c�λ� −M�∞Ψ�w(t)� dt ≤ τ

M
��Ψ��∞�A− c�λ� −M�∞��,

and � τ

�
log�

λ�(t)
M + c�λ� −M�∞Ψ�w(t)� dt ≤ �ψΨ��∞�w −w����.

We conclude that for d either h�, K or V ,

d(λ, λ�) ≤ C���A− c�λ� −M�∞�� + �w −w�����,
for a constant C depending on M, τ, the range of λ� and on the link function Ψ.�e same computations can be
carried out in the case of discrete observations and the statement of the previous display will hold for another
constant C depending on the same quantities.

We verify now the conditions of �eorem �.� of [��]. Let ε > � and recall that B(ε) is de�ned as (�.��). By
construction it holds that Πn(B(ε)) is bounded from below by

P�K(λ, λ�) ≤ ε�,V(λ, λ�) ≤ ε�,A > a�
for λ = M +AΨ(Wn), λ� = M + c�λ� −M�∞Ψ(w�) and every a > �.�e bound derived above implies that there
exists a constant C > � such that for a = c�λ� −M�∞, this is further bounded from below by

P��A− c�λ� −M�∞�� + �Wn −w���� ≤ C�ε�,A ≥ c�λ� −M�∞�.
By the triangle inequality and independence this is lower bounded by

P(�A− c�λ� −M�∞� ≤ Cε,A ≥ c�λ� −M�∞)P(�Wn −w��� ≤ Cε).
�e �rst factor in the display is bounded from below by a constant times ε and the last one is lower bounded
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by assumption. Hence, by the prior mass assumption of the theorem, we have that the prior mass condition is
ful�lled for certain constants c�, c� > � as in the statement of the theorem.

To verify condition remaining mass condition is su�ces to show that for some given constant c� > �, there
exist sets Λn such that Πn(Λc

n) ≤ � exp(−c�nε̃�n). By the assumptions, there exists a set Bn such that P(Wn �∈
Bn) ≤ exp(−c�nε̃�n) and a sequence an = an(c�)→∞ such that P(A > an) ≤ exp(−c�nε̃�n) as well.�en for the
sieves Λn = {aΨ(w) ∶ a ≤ an ,w ∈ Bn} we have

Πn(Λc
n) ≤ P(A > an) + P(Wn �∈ Bn) ≤ �e−c�nε̃�n ,

as required.

By the bound on the Hellinger distance derived above and the entropy assumption of the theorem we have,
for a constant L > �,

logN(Lε̄n ,Λn , h) ≤ logN(ε̄n , [�, an], � ⋅ �) + logN(ε̄n , Bn , � ⋅ ��)� log an
ε̄n
+ C�nε̄�n .

�e right-hand side is bounded by a multiple of nε̄�n hence verifying the entropy condition.

� .� .� P���� �� T������ � .�

Under the prior Π, the number of knots J has, by construction, a shi�ed Poisson distribution. By Stirling’s ap-
proximation, this implies that for large j,

P(J > j) � e−c� j log j , P(J = j) � e−c� j log j
for some c�, c� > �. For the sequence of inner knots k constructed in the de�nition of the prior the mesh size
M(k) =max{�k j − k j−��} and the sparsity m(k) =min{�k j − k j−��} satisfy

P(m(k) < j−� � J = j) = �, P(M(k) ≤ �� j � J = j) � e− j log j .
�e �rst of these facts follows trivially from the construction, the second one by bounding the probability of
interest from below by the probability that every of the consecutive intervals of length τ� j contains at least one
knot. For the B-spline coe�cients, by independence,

P(�θ − θ��∞ ≤ ε � J = j) � ε j
for all θ� ∈ [M�,M�] j.�eorem � of [�] deals exactly with this situation. In the present setting the theorem asserts
that if λ� ∈ Hα([�, τ]) and M� ≤ λ� ≤ M�, then for Jn , J̄n > q and positive εn ≥ ε̄n such that εn → �, nε̄�n → ∞
and

�� ε̄n�λ��Cα
�−��α ≤ J̄n , log J̄n � log �

ε̄n
, Jn log

J�n
εn
� nε�n , nε̄�n ≤ Jn log Jn , (�.��)



�� CHAPTER �. BAYESIAN SMOOTHING FOR INHOMOGENEOUS POISSON PROCESSES

then there exist function spaces (of splines) Λn and a constant c > � such that

Π(λ ∶ �λ − λ��∞ ≤ �ε̄n) � e−c J̄n log �
ε̄n , (�.��)

Π(λ �∈ Λn) � e−c�nε̄�n , (�.��)

logN(εn ,Λn , � ⋅ ��) � nε�n . (�.��)

Now observe that the �rst two inequalities in (�.��) hold for

ε̄n = n− α
�+�α logp n, J̄n = Kn �

�+�α logq n,

provided K is large enough and q ≥ −p�α.�e third and fourth inequalities then hold for

Jn = Ln �
�+�α logr n, εn = n− α

�+�α logs n

if L is large enough and �p ≤ r + � ≤ �s. To complete the proof we have to link (�.��)–(�.��) to the conditions
(�.�)–(�.�) of�eorems �.� and �.�. Note that since (�.�) should hold for all c� > �, we need to have

J̄n log
�
ε̄n
� nε̄�n .

For our choices of J̄n and ε̄n this holds if �p > q + �.�is amounts to choosing p > α�(� + �α).�en if we de�ne

ε̃n =���� J̄n
n
log

�
ε̄n

the right-hand side of (�.��) equals exp(−�nε̃�n). Moreover, it holds that ε̃n ∼ n−α�(�+�α)(log n)(q+�)��, so if we
make sure that p > (q + �)��, the desired inequality (�.�) holds.�e considerations above imply that (�.�) then
holds as well, for any c� ≥ �. Recall that we found that the entropy condition holds for εn ∼ n−α�(�+�α)(log n)s,
provided s > p.�is means that we should choose p, q, r and s above such that

p > α
� + �α , r = �p − �, s > p, q = − �

� + �α .
Since the intensities in Λn are uniformly bounded by a common constant (see the proof of �eorem � of [�]),
(�.��) implies that (�.�) is ful�lled.

� .� .� P���� �� T������ � .�

We again verify the conditions of�eorem �.� of [��].

Note that by the triangle inequality and the fact that λ� is increasing,

�A+ BD − λ��∞ ≤ �A− λ�(�)� + B�D − λ� − λ�(�)
λ�(τ) − λ�(�)�∞ + �B − (λ�(τ) − λ�(�))�.

Hence, by independence, there exists a constant C� > � only depending on λ� such that for ε ∈ (�, �), with
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ν� = (λ� − λ�(�))�(λ�(τ) − λ�(�)),
Π(λ ∶ �λ − λ��∞ ≤ C�ε)≥ P(�A− λ�(�)� ≤ ε)P(�B − (λ�(τ) − λ�(�))� ≤ ε)P(�D − ν��∞ ≤ �ε).

�e �rst two factors on the right are bounded from below by a constant times ε. To deal with the third one we
argue as in Example �.� of [��]. Let ε > � be �xed for now and let � = t� < t� < � < tN = τ be points such that for
Ii = (ti−�, ti], ν�(Ii) ≤ ε. Since ν� has total mass one, these points can be chosen such that N � ��ε. Now it can
be veri�ed that �D − ν��∞ ≤ ∑ j≤N �D(I j) − ν�(I j)� + ε and hence

P(�D − ν��∞ ≤ �ε) ≥ P��
j≤N �D(I j) − ν�(I j)� ≤ �ε�.

Lemma �.� of [��] implies that for ε small enough, the probability on the right is bounded from below by a
constant times exp(−c(��ε) log(��ε)) for some c > �. Putting things together we �nd that for ε > � small enough
and constants c�,C > �,

Π(λ ∶ �λ − λ��∞ ≤ C�ε) � ε�e−c �ε log �
ε � e−c′ �ε log �

ε .

By using the inequalities derived in Lemma �.� for continuous data and on Section �.�.� for the discrete setup,
for all su�ciently small ε > �,

{λ ∶ K(λ, λ�) ≤ Cε�,V(λ, λ�) ≤ Cε�} ⊃ {λ ∶ �λ − λ��∞ ≤ C�ε},
for some C > �. Combining this with the previous statement it follows that the prior mass condition is ful�lled
for ε̃n a multiple of (n� log n)−���.

Next we de�ne sieves Λn = { f ∶ [�, �] → [�, �Ln] � f increasing}, for Ln a sequence of positive numbers
further determined below. Since the random function A + BD is an increasing function on [�, �] which takes
values in [�,A+ B],

Π(Λc
n) ≤ P(A > Ln) + P(B > Ln).

By the assumption on the tails of A and B, this is bounded by a constant times exp(−c n��� log n) for Ln ∼ log� n,
which in turn is bounded by to be bounded by e−C�nε̃�n for any constant C� > �. Hence, the remaining mass
condition is satis�ed.

Weuse now the bounds on theHellingermetric obtained in Lemma �.� for continuous data and in Section �.�.�
for discrete data. For the entropy condition we note that the functions in

√
Λn are increasing and take values in[�,√�Ln]. Hence, by�eorem �.�.� of [��], we have the entropy bound

logN(ε,Λn , h) � logN(ε,√Λn , � ⋅ ��) ≤ logN[ ](ε,√Λn , � ⋅ ��) � √Ln
ε

.

�is shows that the entropy condition is satis�ed for ε̄n = (n�√Ln)−��� ∼ (n� log n)−���. We conclude that we
have the posterior rate (n� log n)−��� relative to the Hellinger distance.





4
Adaptive Priors based on Splines with Random Knots

S������ ��� useful building blockswhen constructing priors on nonparametricmodels indexedby functions.
Recently, it has been established in the literature that hierarchical priors based on splines with a randomnumber of
equally spacedknots and randomcoe�cients in the corresponding B-spline basis deliver,under certain conditions,
adaptive posterior contraction rates, over certain smoothness functional classes. In this chapter we extend these
results for when the location of the knots is also endowed with a prior.�is has already been a common practice
in MCMC applications, but a theoretical basis in terms of adaptive contraction rates was missing. Under some
mild assumptions, we establish a result that provides su�cient conditions for adaptive contraction rates in a range
of models, over certain functional classes of smoothness, up to the order of the splines that are used. We also
present some numerical results illustrating how such a prior adapts to inhomogeneous variability (smoothness)
of the function in the context of nonparametric regression.
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� .� I�����������

�e Bayesian approach in statistics has become quite popular in recent years as an alternative to classical frequen-
tist methods.�e main appeal of the Bayesian methodology is its conceptual simplicity: given a model for the
observed data X ∼ Pf , f ∈ F , some space of functions, put a prior on the unknown parameter f and draw infer-
ences based on the resulting posteriorΠ( f �X). Knowledge about themodel under study can also be incorporated
into the inference procedure via the prior. However, some seemingly “correct” priors can lead to unreasonable
posteriors, especially in nonparametric models. It is therefore desirable to place ourselves in a setting where it is
possible to assess the quality of the resulting posterior from some objective point of view.�is gave rise to the
development of the notion of contraction rate (cf. [��]), a Bayesian analog of a convergence rate: data is assumed
to come from a �xed probability measure P� = Pf� for a “true” f� ∈ F ; the contraction rate is then the smallest
radius such that the posterior mass in balls (with respect to an appropriate distance) of probability measures
around P� converges to � in P�-probability as some information index such as a sample size goes to in�nity.

Some general results about posterior contraction rates establish su�cient conditions on prior distributions
such that the resulting posteriors attain a certain contraction rate. In this spirit, when studying speci�c priors,
some authors now choose to present their results in the form of say meta-theorems which claim that su�cient
conditions (such as the ones in [��]) required to attain a certain range of contraction rates hold for their choice
of prior; cf. [��, ��, ��] and further references therein. We adopt this practice here as well.

In the case where f� is a function from some functional space of smoothness α, the posterior contraction
rate is typically compared to the convergence rate of the minimax risk (called optimal rate) over that space in the
estimation problem. For example, if we observe a sample of size n and want to estimate a univariate α-smooth
function (e.g., density or regression function), the typical optimal rate is of order n−α�(�α+�), possibly up to a
logarithmic factor depending on the risk function. If the smoothness parameter α is unknown, and one wants to
build estimators which attain the optimal rate corresponding to α but do not depend explicitly on α, then one
speaks of an adaptation problem. In a Bayesian context, the adaptation problem consists in �nding a prior which
leads to the optimal posterior contraction rate (usually up to a logarithmic factor) for any α-smooth function
of interest and does not depend on the smoothness parameter α. Such priors are called rate adaptive.�ere is a
growing number of papers, where this problem has been studied in di�erent settings; cf. [�, ��, ��, ��, ��] among
others.

Splines, in particular, can be used when constructing adaptive priors. A spline (cf. [��]) is a piecewise poly-
nomial function designed to have a certain level of smoothness which is referred to as its order. Splines are easy
to store, di�erentiate, integrate and evaluate on a computer, and are extensively used in practice for constructing
good, parsimonious approximations of smooth functions.�e points at which the di�erent polynomial pieces of a
spline connect are called knots. If an order (read: maximal polynomial degree) and a set of knots is �xed, then the
space of all splines with that order and those knots forms a linear space which admits a basis of so-called B-splines.
Any spline of a �xed order is consequently characterized by a set of knots and its coordinates in the B-splines
basis corresponding to those knots. Randomly generating a number of knots and, given those, generating random
coordinates in the corresponding B-spline basis with equally spaced knots results in a random spline whose law
can be used as a prior. If, given the number of knots, the coordinates in the corresponding B-spline basis are
chosen to be independent and normally distributed, then the resulting spline has a conditionally Gaussian law
and was studied by [��] by using Reproducing Kernel Hilbert Space techniques. In [��] a more general, random
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series prior was proposed: the coe�cients in the series are not necessarily independent or Gaussian and a basis
other than the B-spline basis can also be used.

�e case where the locations of the knots are also random is not covered by the results of either [��] or
[��]. However when practitioners put a prior on the number of knots they almost invariably also put a prior
on the locations of the knots (e.g., [��, ��, ��]) – a Poisson process is a popular choice. �eir motivation for
allowing arbitrarily located knots seems to be twofold. Firstly, this is attractive from the implementation point of
view: designing reversible jump MCMC samplers is much simpler if any collection of knots is allowed since new
knots can be inserted at arbitrary positions causing only localized changes in the spline. Secondly, the resulting
posterior based on the prior with random locations of the knots is expected to be more adaptive with respect to
inhomogeneous smoothness of the function of interest: the function may not have a �xed level of smoothness
throughout its support, it may consist of rough and smooth pieces. To sustain an adequate level of accuracy over
the whole support, more knots are needed in rough pieces and less in smooth ones.�erefore, to make it at least
possible for the resulting posterior to pick up eventual spatial features of the function, the prior has to be �exible
enough to model random locations of the knots.

In this chapter, we extend the results of [��], and those of [��] with respect to the prior with random knots: we
addonemore level to the hierarchical spline prior by putting a prioron the location of the knots of the spline aswell,
making, in fact, the basis functions also random. Under some mild assumptions on the proposed hierarchical
spline prior, we establish our main result for the proposed prior, providing su�cient conditions for adaptive,
optimal contraction rates of the resulting posterior in a range of models (among others: density estimation,
nonparametric regression, binary regression, Poisson regression, and classi�cation). In doing so, we provide
a theoretical basis for the common practice of using randomly located knots in spline based priors. Another
interesting feature of a prior with random knots locations is that it leads to the posterior of the knots vector
which provides (some sort of empirical Bayes) inference on the variability (smoothness inhomogeneity) of the
underlying function. We present some numerical results illustrating how such a prior adapts to inhomogeneous
variability (smoothness) of the function in the context of nonparametric regression.

� .� N������� ��� ������������� �� �������

First we introduce some notation. For d ∈ N and � ≤ p < ∞ denote by �x�p = �∑d
i=� �xi �p���p the lp-norm of

x = (x�, . . . , xd) ∈ Rd and by �x�∞ = maxi=�,...,d �xi �. For � ≤ p < ∞ let the Lp-norm of a function f on [�,�] be� f �p = � ∫ �
� � f (x)�p dx)��p and � f �∞ = supx∈[�,�] � f (x)�.

We use � (respectively �) to denote smaller (respectively greater) or equal up to a constant, the symbols a ∨ b
and a ∧ b stand for max{a, b} and min{a, b} respectively. �e covering number N(ε, S , d) of a subset S of a
metric space with balls of size ε is the smallest number of balls (with respect to distance d) of radius ε needed to
cover S.

Now we provide some preliminaries on splines, which can be found, for example, in [��]. A function is called
a spline is of order q ∈ N, with respect to a certain partition of its support, if it is q − � times continuously
di�erentiable and when restricted to each interval in this partition, coincides with a polynomial of degree at most
q − �. Consider q ∈ N, q ≥ �, which will be �xed throughout the remainder of this text. For any j ∈ N, such that
j ≥ q letK j = {(k�, . . . , k j−q) ∈ (�, �) j−q ∶ � < k� < ⋅ ⋅ ⋅ < k j−q < �}. We will refer to a vector k = k j ∈ K j as a set of
inner knots; the index j in k j will sometimes be used to emphasize the dependence on j. A vector k ∈ K j will be
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said to induce the partition �[k�, k�), [k�, k�), . . . , [k j−q , k j−q+�]�, with k� = � and k j−q+� = �. For any k ∈ K j we
call M(k) =max j−q+�i=� �ki − ki−�� the mesh size of the partition induced by k and m(k) =min j−q+�

i=� �ki − ki−�� the
sparseness of the partition induced by k. For a k ∈ K j, denote by Sk = Sqk the linear space of splines of order q on[�, �] with simple knots k (see the de�nition of knot multiplicity in [��]).�is space has dimension j and admits
a basis of so-called B-splines {Bk,�, . . . , Bk, j} = {Bq

k,�, . . . , B
q
k, j}.�e construction of {Bk,�, . . . , Bk, j} involves the

knots k−q+�, . . . , k−�, k�, k�, . . . , k j−q , k j−q+�, k j−q+�, . . . , k j, with arbitrary extra knots k−q+� ≤ � ≤ k−� ≤ k� = �
and � = k j−q+� ≤ k j−q+� ≤ � ≤ k j. Usually one takes k−q+� = � = k−� = k� = � and � = k j−q+� = � = k j, and we
adopt this choice here as well.�ese basis functions are nonnegative: Bk,i(x) ≥ �, for all x ∈ [�, �]. Besides, they
have local support and form a partition of unity:

Bk,i(x) = � for x �∈ [k−q+i , ki], j�
i=� Bk,i(x) = � for all x ∈ [�, �]. (�.�)

To refer explicitly to the coordinates a = (a�, . . . , aj) ∈ R j of a spline in a speci�c B-spline basis with inner knots
k, we write sk,a(x) = ∑ j

i=� aiBk,i(x), x ∈ [�, �]. Since∑ j
i=� Bk,i(x) = �, it is easy to see that for any sk,a, sk,b ∈ Sqk

�sk,a − sk,b�� ≤ �sk,a − sk,b�∞ ≤ �a − b�∞ ≤ �a − b��. (�.�)

Splines have good approximation properties for su�ciently smooth functions provided they are de�ned on a
partition with appropriately small mesh size. We say that a function f on [�, �] belongs to a generic smoothness
class Fα , α > �, if f is Lipschitz, i.e., f ∈ Lκα(Lα , [�, �]) = { f ∶ � f (x�) − f (x�)� ≤ Lα �x� − x��κα , x�, x� ∈ [�, �]} for
some κα , Lα > �, and for any set of inner knots k there exists a spline sk,a ∈ Sqk such that for some bounded Cf

� f − sk,a�∞ ≤ Cf Mα(k). (�.�)

A leading example of a smoothness class Fα is the Hölder space Hα = Hα(L, [�, �]), � < α ≤ q, which is
the collection of all functions f that have bounded derivatives up to order α� = �α� = max{z ∈ Z ∶ z < α}
and such that the α�-th derivative satis�es the Hölder condition � f (α�)(x) − f (α�)(y)� ≤ L�x − y�α−α� , for L > �
and x , y ∈ [�, �]. In this case, a well-known spline approximation result (cf. [��]) states that (�.�) holds with
Cf = Cq� f (α)�∞ for some constant Cq depending only on q. Other examples of smoothness classes for which
the approximation property (�.�) hold, include α-times continuously di�erentiable functions, Sobolev and Besov
spaces; cf.�eorems �.��, �.�� and �.�� in [��].

� .� M��� R�����

We begin by describing a hierarchical prior on S = Sq = ∪∞j=q ∪k∈K j Sqk : �rst draw a number J ∈ N, J ≥ q; then,
given J, generate independently (J−q) inner knotsKJ ∈ K j and also independently, J B-spline coe�cients θ ∈ RJ .
Our prior on S will be the law of the random spline sKJ ,θ . We impose the following conditions on this prior. For
c�, c� > �, � ≤ t�, t� ≤ � and all su�ciently large j,

P(J > j) � exp � − c� j logt� j�, (�.�)

P(J = j) � exp � − c� j logt� j�. (�.�)
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For some τ ≥ �, c� > �, � ≤ t� ≤ �, and all j ≥ q,
P�m(K j) < δ( j)�J = j� = �, (�.�)

P�M(K j) ≤ τ� j�J = j� � exp � − c� j logt� j�, (�.�)

where δ(i) is a positive, strictly decreasing function on N. Without loss of generality assume that δ(i) ≤ �, i ∈ N.
For each j ≥ q, the conditional distribution of θ ∈ R j satis�es the following condition: for any M > � there exists
c� = c�(M) such that

P��θ − θ��∞ ≤ ε�J = j� � exp � − c� j log(��ε)� (�.�)

for all ε > � and all θ� ∈ R j such that �θ��∞ ≤ M.

For examples of particular choices on the components of our hierarchical prior which verify these conditions
we refer the reader to Section �.�.

Denote C j(M) = [−M ,M] j.�e following theorem is our main result.

�eorem �.� (Prior bounds)
Let � f��∞ < M and f� ∈ Fα so that (�.�) holds with C f� . Let εn , ε̄n be two positive sequences such that εn ≥ ε̄n,
εn → � as n → ∞ and nε̄�n > �. Assume that there exist sequences Jn , J̄n > q, Mn ≥ � and a constant cM ≥ c�
satisfying:

Jn log � JnMn

εnδ(Jn)� � nε�n , (�.�)

nε̄�n ≤ Jn logt� Jn , P�θ �∈ C j(Mn)�J = j� � exp(−cMnε̄�n), q ≤ j ≤ Jn , (�.��)

� ε̄n
ταCf�

�−��α ≤ J̄n , logt�∨t� J̄n � log �
ε̄n

. (�.��)

Let Sn = �Jn
j=q�k∈Kδ( j)

j
�sk,θ ∈ Sqk ∶ �θ�∞ ≤ Mn�, where Kδ

j = {k ∈ K j ∶ m(k) ≥ δ}.�en it holds that

logN(εn ,Sn , � ⋅ ��) � nε�n , (�.��)

P�sKJ ,θ �∈ Sn� � exp� − c�nε̄�n�, (�.��)

P��sKJ ,θ − f��∞ ≤ �ε̄n� � exp� − (c�(M) + c� + c�)J̄n log(��ε̄n)�. (�.��)

Proof: First we establish (�.��). Let Ln( j) = �Mn j(q+ �)(δ( j))−(q+�) and j > q. Let {θ�, . . . , θm�} be an εn��-net
of the set {θ ∈ R j ∶ �θ�∞ ≤ Mn} and let {x�, . . . , xm�} be an εn�(�Ln( j))-net of {x ∈ R j−q ∶ x ∈ (�, �) j−q}, both
with respect to the � ⋅�∞-norm.�en, by using (�.�) and Lemma �.� (Lemma �.� is applicable since εn�(�Ln( j)) ≤
��(q − �) for su�ciently large n), {sx l ,θk , k = �, . . . ,m�, l = �, . . .m�} forms an εn-net of �k∈Kδ( j)

j
�sk,θ ∈ Sqk ∶
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�θ�∞ ≤ Mn� with respect to the � ⋅ �∞-norm. By using this fact, we obtain for su�ciently large n that

N�εn , Sn , � ⋅ ��� ≤ N�εn , Sn , � ⋅ �∞� ≤ Jn�
j=q N�εn , ∪k∈Kδ( j)

j
�sk,θ ∈ Sqk ∶ �θ�∞ ≤ Mn�, � ⋅ �∞�

≤ Jn�
j=q �N� εn� , �θ ∈ R j ∶ �θ�∞ ≤ Mn�, � ⋅ �∞� N� εn

�Ln( j) , (�, �) j−q , � ⋅ �∞��
≤ Jn��Mn

εn
�Jn��Ln(Jn)

εn
�Jn−q ≤ Jn� ��(q + �)M�

n Jn
ε�n(δ(Jn))q+� �

Jn
.

�e last relation and (�.�) imply (�.��):

logN�εn , Sn , � ⋅ ��� � Jn log� JnMn

εnδ(Jn)� � nε�n .

Now we check (�.��). From the de�nition of Sn, the relations (�.�), (�.�) and (�.��), it follows that

P�sKJ ,θ �∈ Sn� ≤ P�{J > Jn} ∪ �{q ≤ J ≤ Jn} ∩ �{m(K j) < δ( j)} ∪ {θ �∈ C j(Mn)}���
≤ P�J > Jn� + Jn�

j=qP
�J = j��P�m(K j) < δ( j)�J = j� + P�θ �∈ C j(Mn)�J = j��

� exp� − c�Jn logt� Jn� + � + exp� − cMnε̄�n� � exp� − c�nε̄�n�.

It remains to prove (�.��). First note that, by using (�.�) and (�.��), for all j ≥ J̄n and for all sets of knots k j ∈ K j

such that M(k j) ≤ τ� j, there exists a spline sk j ,θ� ∈ Skjq (of course, θ� = θ�(k j) = θ�(k j , f�)) such that

� f� − sk j ,θ��∞ ≤ Cf�M
α(k j) ≤ Cf�τ

α J̄−αn ≤ ε̄n . (�.��)

Since � f��∞ < M, there exists an ε > � such that the spline sk j ,θ� from (�.��) satis�es �sk j ,θ��∞ ≤ M − ε
for su�ciently large n. Besides, J̄n must grow with n in view of (�.��). �en, according to Lemma �.�, there
exists a δ = δ(Fα , ε) such that, for su�ciently large n, �θ�(k j)�∞ ≤ M for all sets of knots k j ∈ K j such that
M(k j) ≤ τ�J̄n ≤ δ and j ≥ J̄n.

Introduce the events: E j
� = {M(K j) ≤ τ� j}, E j

� = {� f� − sK j ,θ�(K j)�∞ ≤ ε̄n}, E j
� = {�θ�(K j) − θ�∞ ≤ ε̄n},

E j
� = {� f� − sKJ ,θ�∞ ≤ �ε̄n} and E j

� = {�θ�(K j)�∞ ≤ M}. Using the argument from the previous paragraph, the
triangle inequality, (�.�) and (�.��), we obtain that

EJ̄n
� ⊆ EJ̄n

� , EJ̄n
� ⊆ EJ̄n

� , E j
� ∩ E j

� ⊆ E j
�, j ≥ q. (�.��)
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Combining (�.�), (�.�), (�.�), (�.��) and (�.��), we prove (�.��):

P��sKJ ,θ − f��∞ ≤ �ε̄n� = P(EJ
�) ≥ P(J = J̄n)P�EJ̄n

� �J = J̄n)≥ P(J = J̄n)P�EJ̄n
� ∩ EJ̄n

� �J = J̄n)≥ P(J = J̄n)P�EJ̄n
� ∩ EJ̄n

� ∩ EJ̄n
� �J = J̄n�= P(J = J̄n)E�P�EJ̄n

� ∩ EJ̄n
� ∩ EJ̄n

� �J = J̄n ,KJ̄n��= P(J = J̄n)E�I{KJ̄n ∈ EJ̄n
� ∩ EJ̄n

� }P�EJ̄n
� �J = J̄n ,KJ̄n��≥ P(J = J̄n)P�EJ̄n

� �J = J̄n� inf�θ��∞≤M P��θ − θ��∞ ≤ ε̄n�J = J̄n�
� exp � − (c� + c�)J̄n logt�∨t� J̄n� exp � − c�(M)J̄n log(��ε̄n)�� exp � − (c�(M) + c� + c�)J̄n log(��ε̄n)�.

Remark �.� Condition (�.�) is used in the proof of�eorem �.� exclusively to enforce ∑J
j=q P�J = j�P�m(K j) <

δ( j)�J = j� to be zero, when proving (�.��). Inspection of the proof shows however that, instead of condition (�.�),
it would su�ce to require this sum to be upper-bounded by a multiple of exp � − c�nε̄�n�. Although this would be a
weaker requirement, typically the sequence ε̄n will depend on the unknown smoothness α. To avoid the dependence
on ε̄n, a slightly stronger condition (based on the fact that nε̄�n is of a smaller order than n as n → ∞) can be
proposed. Namely, if condition (�.�) is replaced by

Jn�
j=qP
�J = j�P�m(K j) < δ( j)�J = j� ≤ c� exp(−c�n), (�’)

for some c�, c� > � and a function δ(⋅) as in (�.�), then the conclusions of�eorem �.� remain valid as long as Jn is
a sequence satisfying (�.�) and (�.��); cf. Section �.� for a comparison of (�.�) and (�’).

Remark �.� If the range of the underlying curve f� is contained in some known interval [a, b] ⊂ R, then, according
to Lemma �.� and the proof of property (�.��), the prior on θ ∈ R j can be chosen to be supported on, say, [a−�, b+�] j
so that (�.�) has to hold only for θ� ∈ [a−�, b+�] j. Condition (�.��) will be trivially satis�ed for Mn > (�−a)∨(b+�).
Remark �.� If (�.��) is assumed instead of (�.�), the proof of (�.��) can then be simpli�ed a lot, as in this case one
can condition on the event {KJ̄n = k̄ J̄n} so that θ� = θ�(k̄ J̄n) becomes �xed and P(EJ

� �J = J̄n ,KJ̄n = k̄ J̄n) = �.
� .� I����������� �� ��� ���� ������

We clarify now the relevance of our result. Consider a family of models P = �P f ∶ f ∈ FA�, FA = ∪α∈AFα ,
with densities p f with respect to some common dominating measure. Assume that we observe a sample X(n) ={X�, . . . , Xn} ∼ p(n)f� , Xi

ind∼ p f� , f� ∈ Fα for some unknown smoothness α ∈ A.�e Bayesian approach consists of
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putting a prior measureΠ onF ⊆ FA which, together with the likelihood p(n)f , leads to the posterior distribution
Π(⋅�X(n)) via Bayes’ formula:

Π�A�X(n)� = ∫A p(n)f (X(n)) dΠ( f )∫F p(n)f (X(n)) dΠ( f )
for a measurable A ⊆ F .�e asymptotic behavior of the posterior distribution can be studied from the point of
view of the probability measure P� = P f� ; see [��].

For two densities p f and pg with f , g ∈ FA, de�ne the (squared) Hellinger metric h�(p f , pg) = ��� −
Eg
�
p f (X)�pg(X)�,Kullback-Leibler divergenceK(p f , pg)=−Eg log �p f (X)�pg(X)� and theCsiszár f -divergence

V(p f , pg) = Eg log� �p f (X)�pg(X)�. De�ne also the ball B(εn , f�) = � f ∈ F ∶ K( f , f�) ≤ ε�,V( f , f�) ≤ ε��.
�e following theorem is a version of�eorem �.� from [��] which makes a statement about the asymptotic

behavior of a posterior measure.

�eorem �.� (�eorem �.� of [��])
Let Πn be a sequence of priors on F . Suppose that for two positive sequences κn ≥ κ̄n such that nκ̄�n → ∞ and
κn → � as n →∞, sets Fn ⊆ F and constants b�, b�, b�, b� > �, the following conditions hold:

logN�κn ,Fn , h� ≤ b�nκ�n , (�.��)

Πn(F�Fn) ≤ b�e−(b�+�)nκ̄�n , (�.��)

Πn(B(κ̄n , f�)) ≥ b�e−b�nκ̄�n . (�.��)

�en, for large enough M > �, Πn� f ∈ F ∶ h(p f , p f�) ≥ Mκn�X(n)�→ � as n →∞ in P f� -probability.

�e conditions of this theorem require the existence of a sieveFn with small entropy (�.��)which containsmost
of the prior mass (�.��) and with enough prior mass around the parameter f� which indexes the “true” underlying
measure of the data. Assumenow that themodels inP are such that ford� being h�,K orV ,d�(p f , p f�) � � f − f����.
If in addition one can prove that in the considered model h(p f , p f�) � � f − f���, then �eorem �.� delivers
a contraction rate κn with respect to the L�-distance as well. Some examples of models for which the above
relations between norms can be established are,white noise, density estimation,non-parametric regression, binary
regression, Poisson regression and classi�cation; cf. [��, ��, ��]. We should note here that it requires a fair piece of
e�ort to implement this idea formany concretemodels, only for thewhite noisemodel the above relations between
norms are straightforward. Once these relation between norms are established, one can apply our meta-theorem
(�eorem �.�) to obtain an adaptive contraction rate that essentially veri�es (�.��)–(�.��) for our spline-based
prior. We summarize this in the following theorem.

�eorem �.� (Contraction)
Let Π be the spline prior described in Section �.�. Consider a family of models P = �P f ∶ f ∈ FA�, FA = ∪α∈AFα ,
with densities p f with respect to some common dominating measure. Assume also that the models in P are such
that d�(p f , p f�) � � f − f���� for d� being h�, K or V. Take an i.i.d. sampleX(n) = {X�, . . . , Xn}, Xi ∼ p f� , f� ∈ Fα ,� f��∞ < M, for some unknown smoothness α ∈ A, α ≤ q. Consider a prior Π that veri�es (�.�) through (�.�) for
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certain constants c�, c�, c�, t�, t� and t�. Assume that at least one of the two conditions, α > � or t�∧ t� < �, is ful�lled.
�en, for large enough C > �, Π� f ∈ F ∶ h(p f , p f�) ≥ Crn�X(n)� → � as n → ∞ in P�-probability for

rn = n−α�(�α+�)(log n)α�(�α+�)+(�−t�)��. If h(p f , p f�) � � f − f��� then in the previous statement the Hellinger
distance may be replaced by the L�-distance and the statement remains valid.

Proof: We have that for some constant ρ > � and F = S , Fn = Sn,
N�κn ,Fn , h� ≤ N(κn�ρ,Fn , � ⋅ ��), (�.��)

Π(F�Fn) = P�sKJ ,θ �∈ Fn�, (�.��)

Π(B(κ̄n , f�)) ≥ P��sKJ ,θ − f��∞ ≤ κ̄n�ρ�. (�.��)

�e �rst inequality follows from the fact that by assumption h(p f , pg) ≤ ρ� f − g�� and so a κ�ρ-cover of Fn

according to � ⋅ �� induces a κ-cover of Fn according to h.�en, since d�(p f , p f�) ≤ ρ� f − f���� for d� being K
or V , we have B(κ̄n , f�) ⊃ � f ∈ F ∶ � f − f��� ≤ κ̄�ρ� and the last inequality follows.

By assumption f� ∈ Fα satis�es the conditions of�eorem �.�; assume (�.�) holds for some Cf� . Consider
then a prior that satis�es (�.�)–(�.�). Let us present a choice of quantities Mn, δ( j), Jn, J̄n, εn and ε̄n that meet
conditions (�.�)–(�.��). First of all, the sequence Mn can be taken a polynomial in n (for instance, for normal or
exponential conditional priors for θ ∈ R j in (�.��)) and ��δ( j) a polynomial in j. Next, note that there is no J̄n
that satis�es (�.��) if both α ≤ � and t� ∧ t� = � hold. If either α > � or t� ∧ t� < �, then the best possible choices are
J̄n = J̄n(C�) = τC��α

f� (ε̄n(C�))−��α so that the �rst inequality of (�.��) is satis�ed, ε̄n = ε̄n(C�) = C�(log n�n)α�(�α+�)
for su�ciently large C� ≥ � so that the second inequality of (�.��) is satis�ed, Jn = C�n��(�α+�)(log n)�α�(�α+�)−t�
for su�ciently large C� (any C� ≥ C�

� will do) so that the �rst inequality of (�.��) is satis�ed, and �nally,

εn = C�n−α�(�α+�)(log n)α�(�α+�)+(�−t�)��
for su�ciently large C� so that (�.�) is satis�ed. Since these quantities satisfy (�.�)–(�.��),�eorem �.� implies
conditions (�.��)–(�.��) for the quantities de�ned above. Besides, we take constants C�,C�,C� so big that (�.��)
and (�.��) also hold for ε̄n(√C�) and J̄n(√C�).

Now, take κn = �ρεn and κ̄n = �ρε̄n(√C�).�en it follows from (�.��) and (�.��) that

N�κn ,Fn , h� ≤ N(κn�ρ,Fn , � ⋅ ��) = N(εn ,Fn , � ⋅ ��) � nε�n � nκ�n . (�.��)

Next, using (�.��) and (�.��) for ε̄n(C�) and J̄n(C�), we obtain that

Π(F�Fn) = P�sKJ ,θ �∈ Fn� � exp� − c�nε̄�n(C�)�= exp� − c�(�ρ)−�C�nκ̄�n� ≤ exp� − �nκ̄�n� (�.��)

for su�ciently large C�. Denote K = (c�(M) + c� + c�)τC��α
f� (�ρ)−�α�(�α + �), then

(c�(M) + c� + c�)J̄n(�C�) log(��ε̄n(�C�)) = KC−(�+��α)� nκ̄�n(� + o(�))
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as n →∞.�e last relation, (�.��) and (�.��) for ε̄n(√C�) and J̄n(√C�) imply that

Π(B(κ̄n , f�)) ≥ P��sKJ ,θ − f��∞ ≤ �ε̄n(�C�)�� exp� − (c�(M) + c� + c�)J̄n(�C�) log(��ε̄n(�C�))�� exp� − KC−(�+��α)� nκ̄�n� ≥ exp� − nκ̄�n� (�.��)

for su�ciently large C�.�us, for su�ciently large C� (and C�,C�), the relations (�.��)–(�.��) follow from (�.��),
(�.��) and (�.��) respectively.

Finally, applying�eorem �.� (since (�.��)–(�.��) are ful�lled), we conclude that the contraction rate of the
resulting posterior is at most εn, which appears to be optimal (up to a logarithmic factor) in a minimax sense
over the Hölder classHα (also over α-smooth Sobolev class).

Remark �.� A priori, it may be unknown whether α > � or not, or it may be simply known that α ≤ �. We can
however always ensure the condition t� ∧ t� < � by an appropriate choice of prior. For example, we take a geometric
prior on J so that t� = � and a prior on K j such that (�.��) (which implies (�.�)) holds with, say, t� = �.
� .� E������� �� P�����

We give now examples of particular choices for the several components of our hierarchical prior that verify
conditions (�.�)–(�.�), (�’) and the second relation in (�.��).

As for the prior on the number of basis functions, assumptions (�.�) and (�.�) hold for the geometric, Pois-
son and negative binomial distributions; cf. [��] (assumption (�) is slightly di�erent from the corresponding
assumption (B�) in [��]). Assumption (�.�), in turn, will trivially hold if we assume, for example, the coordinates
of θ ∈ R j to be (conditionally on J = j) independent and identically distributed according to a density � that
is uniformly bounded away from zero on the interval [−M ,M]. On the other hand, the prior distribution on
θ ∈ R j (conditionally on J = j) should have su�ciently light tails so that the second requirement in (�.��) holds
for a sequence Mn that converges to in�nity as n →∞ not faster than polynomially in n. It can easily be checked
for normal and Gamma densities �. Let us consider standard normal �. As q ≤ j ≤ Jn and taking Mn = n, we
immediately derive the required relation:

P�θ �∈ C j(Mn)�J = j� ≤ jP(�θ�� ≥ Mn�J = j) ≤ Jn� exp(−M�
n��)√

�πMn
≤ exp(−cMnε̄�n).

�ere is an ample choice of priors onKJ , given J = j, that satisfy condition (�.�). First note that this condition
enforces the prior on the location of the knots, for each J = j, to be such that, with probability �, adjacent knots
are at least δ( j) apart. �e function ��δ( j) can be taken a polynomial in j of high degree which makes the
requirement less restrictive. If a certain sequence εn veri�es the conditions of�eorem �.�, then an increase in
the exponent of ��δ( j) can be accommodated by making εn larger by a multiplicative factor (cf. condition (�.�)).

A simple choice for the prior on KJ , given J = j, is to pick ( j − q) knots uniformly at random, without
replacement, on a uniform δ( j)-sparse grid. �is construction is possible if δ is chosen in such a way that���δ( j)� > j − q for all j. Another way is to generate the ( j − q) inner knots in K j sequentially in the following
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way: add a knot K� uniformly at random on the interval [δ( j), �− δ( j)], then a knot K� uniformly at random on
the interval [δ( j), � − δ( j)]�(K� − δ( j),K� + δ( j)) and so on. Finally, take the ordered K j = (K(�), . . . ,K( j−q)).
�is construction is always possible if ��δ( j) grows faster than �( j − q). If J is Poisson distributed, these points
are simply distributed like a homogeneous Poisson process, conditioned to have all points at least δ(J) apart.
Clearly, condition (�.�) is satis�ed for these two constructions since all prior mass is concentrated on partitions
with sparseness larger than δ( j).

It is also easy to see that condition (�.�) is veri�ed for the knot vectors obtained from one of these two
constructions. In fact, condition (�.�) is trivially ful�lled if, for some � ≤ t� < �,

P(K j = k̄ j) � exp � − c� j logt� j�, (�.��)

where k̄ j ∈ K j is the set of ( j − q) equally spaced inner knots. �is suggests a mechanism to assure that any
prior which veri�es (�.�) can be slightly modi�ed to also verify (�.�): given J = j, generate a Bernoulli random
variable X with success probability, say, exp(−c� j logt� j); if X = �, then take K j = k̄ j, otherwise pick the knots in
K j according to any procedure which veri�es (�.�), for instance, one of the two procedures described above.�e
resulting prior will trivially satisfy both (�.�) and (�.�).

Condition (�.�) necessarily excludes some knot vectors from the support of the prior (and then also from the
support of the posterior.) It is therefore of interest to design a weaker alternative for condition (�.�). Condition(�′) plays this role in that it allows priors on K which can have any set of knots of [�, �] in its support. Assuming
condition (�’) instead of (�.�) consequently allows us to put positive mass on any vector of simple knots in a
straightforward way: generate a Bernoulli random variable with success probability �− c� exp(−c�n); if X = � take
K j = k̄ j; if X = �, then take an arbitrary K j (for example, independent, uniformly distributed points on [�, �]). If
we take ��δ( j) = j and τ ≥ q, then conditions (�’) and (�.�) are veri�ed.�is procedure, although simple, does
place little prior mass on knot vectors with inhomogeneous distributions.

An alternative, less degenerate prior, which veri�es (�’) and (�.�) can be obtained in the following way. Given
J = j, �rst generate a Bernoulli random variable X� with success probability c� exp(−c�n); if X� = � distribute the( j − q) knots arbitrarily; if X� = �, then generate another Bernoulli random variable X� with success probability
exp(− j); if X� = �, then take ( j − q) equally spaced knots k̄ j; if X� = �, then place the knots in such a way that
(�.�) is veri�ed.�is procedure allows good control of the prior on the knots while not excluding arbitrary knot
vectors.

Note that the priors described abovewhich verify (�.�)–(�.�) do not depend on the sample size n, as prescribed
by the Bayesian paradigm. Condition (�’) is a weaker requirement than condition (�.�), but it will introduce a
dependence on the sample size n in the prior.

Remark �.��e common practice, in applications, of endowing the location of the knots with a Poisson process
prior results in a prior that does not verify assumption (�.�). Assumption (�’), however, will be satis�ed if the prior
is modi�ed in such a way that a large enough prior mass is assigned to an equally spaced knot vector.
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� .� N�������� E������

We present here some numerical results. By applying the reversible jump MCMC (RJMCMC) method [��], we
compare two hierarchical priors in the nonparametric regression model. Both priors are based on splines, as
described in Section �.�, and they satisfy conditions (�.�)–(�.�).�e �rst has a.s. equally spaced knots and in the
second the locations of the knots are random; we therefore refer to these priors as the �xed knots prior and the
free knots prior. We also look into the possibility of using data-driven priors on the knots based on a two stage
empirical Bayes procedure. We say that vector x = (x�, . . . , xd) ∈ Rd is ordered if x� ≤ . . . ≤ xd .

Consider n = ���� observations X(n) = {(ti ,Yi), i = �, . . . , n} from the non-parametric regression model
with regular design points t(n) = (t�, . . . , tn), ti = i�n:

Yi = f (ti) + ξi , i = �, . . . , n, (M)

where the ξi ’s are independent, standard Gaussian random variables. It is well known that the relations between
appropriate norms required to apply�eorem �.� hold for the model (M).�e regression function f (⋅) is taken
to be the so-called Doppler function

f (t) = ���t(� − t) sin��π ⋅ �.��
t + �.�� �, t ∈ [�, �], (�.��)

which we plot in Figure �.�.� together with the observations from the model (M).
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Figure �.�.�: Simulated data from model (M) used in this section (in blue) and the true regression function (in red).
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Now we describe the two priors, the �xed knots prior and the free knots prior. In both hierarchical priors
we endow J with a (shi�ed, with support starting with q ≥ �) Poisson prior with mean ν and on each spline
coe�cient we put a uniform prior on [−M ,M]. In the �xed knots prior, given J = j, the j − q inner knots are
taken to be equally spaced: ki = i�( j − q + �), i = �, . . . , j − q. In the free knots prior, given J = j, �rst generate
U�, . . . ,Uj−q, uniformly on ��, � − ( j − q + �)δ( j)� with δ( j) = �� j�, and let U(�) ≤ . . . ≤ U( j−q). Next, take the
knot vector K j with entries Ki , j = U(i) + iδ( j), i = �, . . . , j − q. We represent the �xed knots posterior density as
π̄� j, k j , θ j � X(n)� and the free knots posterior as π̃� j, k j , θ j � X(n)�. We have

π̄� j, k j , θ j � X(n)�∝ φn�X(n) − sk j ,θ j(t(n))� ν j−q (�M)− j ,
π̃� j, k j , θ j � X(n)�∝ φn�X(n) − sk j ,θ j(t(n))� ν j−q (�M)− j �� − ( j − q + �)δ( j)� j−q ,

where sk j ,θ j(t(n)) = (sk j ,θ j(t�), . . . , sk j ,θ j(tn)) represents the spline sk j ,θ j evaluated at the design points t(n) and
φn stands for the density of n independent standard Gaussian random variables.

We implemented RJMCMC procedures for these two priors to sample from the corresponding posteriors. A
generic state of the sampler is a vector � j, k j , θ j� ∈ N×R j−q ×R j. To sample from the posterior corresponding to
the �xed knots prior, we consider three types of moves: a) changing the coe�cients of a spline, b) adding a knot
and c) removing a knot. In addition to these moves, the sampler for the posterior corresponding to the free knots
prior has an extra move: d) changing the location of the knots. �ese moves are attempted with probabilities
pa , pb , pc , pd , (pa + pb + pc + pd = �) respectively, which are parameters of the sampler.

A move of type a) corresponds to jumping from the state � j, k j , θ j� to a proposal � j, k j , � j� where � j =
θ j + ηau and u is a vector of j independent standard normal random variables. �is move is attempted with
probability pa. Both ηa and pa are parameters of the sampler. Moves of type d) correspond to jumping from the
state � j, k j , θ j� to a proposal � j, κ j , θ j� where κ j is obtained from k j by perturbing its i-th entry, with the index
i chosen uniformly at random, and then ordering the resulting vector.�e perturbation is κi , j = ki , j + ηdv, with
v a standard normal random variable.�is move is attempted with probability pd and again, both ηd and pd are
parameters of the sampler.�e acceptance probabilities for moves of type a) and moves of type d) are given by,
respectively,

min��, π� j, k j , � j � X(n)�
π� j, k j , θ j � X(n)�� and min��, π̃� j, κ j , θ j � X(n)�

π̃� j, k j , θ j � X(n)��,
where π is either π̄ or π̃.

Now we specify how proposals for moves of type b), where we add an extra knot to the current state of the
chain � j, k j , θ j�, are designed.�e proposal will, for both priors, be a state � j + �, κ j+�, � j+��. For the �xed knots
prior we propose κi , j+� = i�( j − q + �), for i = �, . . . , j − q + �. For the free knots prior, generate a new knot k
uniformly on (�, �) so that k ∈ [ki−�, j , ki , j] (with k�, j = � and k j−q+�, j = �) for some i ∈ {�, . . . , j − q + �}, and
propose κ j+� = (k�, j , . . . , ki−�, j , k, ki , j , . . . , k j−q, j).

For moves of type b), it remains to describe how the coe�cient vector � j+� is generated in the proposal.
Whatever the vector κ j+� is, for the sake of comparing the priors, the procedure for proposing � j+� is the same for
both priors. To ease the notation,we abbreviate the current state and the proposed state as � j, k, θ� and � j+�, κ, ��,
where both κ and � have one more element than k and θ, respectively. �e coe�cients � will be obtained via
(perturbed) interpolation at j + � points t = t j+� = (t�, . . . , t j+�). Of these j + � points, j − q + � points are taken
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to be the midpoints of the intervals comprised between the adjacent points of the vector (�, κ, �) ∈ [�, �] j−q+�;
the remaining q − � points are the �rst q − � elements from the list �, �, κ�, κ j−q+�, κ�, κ j−q , κ�, . . . .�e vector t is
assumed to be ordered.

Consider now the ( j + �) × ( j + �)matrices C = Cj(κ, t) with (i , l)-entry Bκ
l (ti) and the ( j + �) × jmatrices

D = Dj(k, t) with (i , l)-entry Bk
l (ti). One can show that for our choice of interpolation points C and D are of

full column rank. For a matrix M denote by L (M) the linear space spanned by the columns of matrix M.�en
L (C) = R j+�, L (D) ⊆ R j+� with dim(L (D)) = j. Let w ∈L �(D) (the orthogonal complement of L (D) so
that DTw = �) which is unique up to scaling. Clearly, the interpolation problem sκ,�(t) = sk,θ(t) corresponds to
the system of linear equations C� = Dθ. Because of the mismatch in the dimensions of θ and of �, this relation
between θ and � is not a bijection. Indeed, θ = (DTD)−�DTC�ρ for all �ρ = �ρ(θ) = C−�(Dθ + ρw), ρ ∈ R.

Assume that by default all vectors are column vectors. Our proposals for � is the following linear function
that matches the dimensions of θ and �:

� = g(θ , ρ) = C−� �D w� ������ θ
ηρ + ρ̊

������ ,
where ρ is a standard Gaussian random variable, η > � and ρ̊ = ρ̊(θ) is taken to be

ρ̊(θ) = argmin
ρ∈R �sκ,�ρ(θ) − sk,θ��� = �sκ,ω� , sk,θ − sκ,ω���sκ,ω� , sκ,ω�� ,

ω� = C−�w, ω� = C−�Dθ and �s�, s�� represents the inner product ∫ �
� s�(t)s�(t)dt.�e interpretation of ρ̊ is that

our proposal for sκ,� is “centered” (cf. [��]) around a good approximation sκ,� ρ̊ of the previous state sk,θ . �is
central state sκ,� ρ̊ can be seen as an ideal interpolator.

It is straightforward to check that the Jacobian matrix of the mapping g is

Jg = Jg(η) = C−���D ηw� + �w . . . w�diag �(∇θ ρ̊(θ), η)��,
where diag(v) denotes a square matrix with the entries of v in its main diagonal and ∇θ ρ̊(θ) is the gradient of
ρ̊(θ) with respect to θ. Note that the determinant of this Jacobian does not depend on the gradient of ρ̊ and is
given by

det �Jg� = ηdet� �D w� �
det �C� .

We then take η = ηb det �C��det �[D w]�, where ηb becomes a parameter of the sampler.

We propose moves of type b) and c) with probabilities pb, j and pc, j, respectively, which depend on j, pa and
pd (� < pa + pd < �): pb, j = (� − pa − pd)��, pc, j = (� − pa − pd)��, j ≥ q and pb,q−� = (� − pa − pd), pc,q−� = �;
for the �xed knots prior take pd = �.�ese choices make sure if there are no inner knots in the current state, no
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knot is removed. For moves of type b), the acceptance probability of the proposed state � j + �, κ, �� is as follows:
min��, π̄� j + �, κ, � � X(n)�pc, j+�

π̄� j, k, θ � X(n)�pb, jφ�(ρ)ηb� and

min��, π̃� j + �, κ, � � X(n)�pc, j+�( j − q + �)−�
π̃� j, k, θ � X(n)�pb, jφ�(ρ) ηb�,

for the �xed knots prior and the free knots prior, respectively. Moves of type c) are simply the reverse move to a
move of type b), so we omit the details. For this type of move, we remove one knot from the current state of the
chain, uniformly at random, and recompute the spline coe�cients via the inverse of the mapping g.

We let both reversible jump MCMC samplers run for the same number of iterations, both starting from the
state ���, (����, ����, . . . , �����), �� which corresponds to a constant function equal to zero with �� equally
spaced inner knots. We then collect ��.��� states from the each chain.�e results of the MCMC procedures are
given in Figures �.�.� and �.�.�. In both priors we use cubic splines (q = �) and n = ����. We take for the �xed
knots prior ν = ��, M = ��, pa = �.�, pd = �, ηa = �.�� × ��−�, ηb = � × ��−� and ηd = �. For the free knots prior,
we choose ν = ��, M = ��, pa = �.��, pd = �.��, ηa = �.�� × ��−�, ηb = � × ��−� and ηd = � × ��−�.

For both priors, we compute the proposed spline coe�cients in the same way (described above), for the sake
of comparing their performance.�is is, however, not strictly necessary for the free knots prior. In this case, the
insertion of a new knot only has a local e�ect on the spline: if all coe�cients are kept the same, it is simple to
propose a reasonable procedure for the new coe�cient associated with the newly added B-spline. In case of the
free knots prior, adding and removing knots from the current state of the chain can be made in a straightforward
and computationally e�cient way which does not involve recomputing all of the coe�cients of the spline in the
proposal.

As the simulations results in Figures �.�.� and �.�.� show, the free knots prior seems to outperform the
�xed knots prior: the free knots posterior detects better the high and low variability regions of the regression
function and facilitates the placement of more knots in the high variability region. In its turn, the �xed knots
prior uses roughly ��%more knots to actually achieve a worse �t: �� knots for the �xed knots posterior against
around �� knots for the free knots posterior.�e �xed knots posterior fails to assign a number of knots that is
compatible with the (inhomogeneous) structure of the true regression function f over the whole interval [�, �].
As a consequence, the posterior seems to compromise on a number of knots which is clearly not su�cient for
the high variability region close to zero (resulting in oversmoothing) and excessive for the low variability region
close to � (undersmoothing the data).

Bayesian analysis based on the free knots prior has the advantage of providing relevant information about
how the posterior chooses to place the knots.�e bottom display of Figure �.�.� clearly shows a concentration of
knots close to �.�is concentration, accompanied with the wider credible bands in the top display, suggests that
the regression function is more variable (“volatile”) in this region.�is can be used to make an inference on the
variability (smoothness inhomogeneity, volatility) of the underlying function and to try and improve estimation
procedures.

In fact, this leads the following data-driven, empirical procedure for selecting a more appropriate prior on



�� CHAPTER �. ADAPTIVE PRIORS BASED ON SPLINES WITH RANDOM KNOTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

Posterior mean and point−wise quantiles (10000 states)

f(
t)

Time (t)

 

 

Posterior mean (n=1000)
True regression function
Point−wise 95% credible intervals

Figure �.�.�:Results of theMCMC sampler for the �xed knots prior: posteriormean and respective ��%point-wise credible
bands (in blue) and the true regression function (in red).
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Figure �.�.�: Results of the MCMC sampler for the free knots hierarchical prior. Above: posterior mean and respective ��%
point-wise credible bands (in blue) and the true regression function (in red). Below: histogram of all the knots in all the
sampled states.

the location of the knots: sample j − q knots, i.i.d., from the empirical knot distribution presented in the bottom
display of Figure �.�.� instead of our original prior on the knots. Actually, since some regions of the support had
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no knots, we mixed the distribution presented in the histogram in Figure �.�.�with a uniform distribution: where
before the numbersUi used to de�ne our prior on the knots were uniform on ��, �−( j−q+ �)δ( j)� they are now
this mixture.�is was done to give positive mass to the knot locations over the entire support of the regression
function thus facilitating the mobility of the knots. We re-ran the MCMC procedure using such a prior on the
knots.�e results are given in Figure �.�.�.�is data-driven prior, at least in our numerical study, does not seem
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Figure �.�.�: Results of the MCMC sampler for the free knots prior with a data-driven prior on the knots locations. On the
le� side we display the same �gures as on the right side, but on the interval [�, �.�]. Above: posterior mean and respective
��% point-wise credible bands (in blue) and the true regression function for comparison (in red). Below: histogram of all
the knots in all the sampled states.

to improve signi�cantly upon the free knots prior. �is might simply mean that the free knots prior is already
managing the location of the spline knots adequately, and reinforcing this via a data-driven prior does not give
an extra advantage in the inference procedure. Note that�eorem �.�may still be applied to such a data-driven
prior so that the resulting posterior retains (at least) the same theoretical properties as the free knots posterior.

Remark �.� To summarize the above discussion, one can obtain the two stage sampler via the following procedure:
a) split the dataset into two (independent) collections of observations; b) run theMCMCprocedure on half of the data
to obtain the posterior for the knots and use this to construct an empirical distribution for the knots; c) construct
a new prior, using the empirical distribution of the knots obtained from the �rst sampler (mixed with any prior
distribution on knots for which (�.�) and (�.�) hold, with a small, yet large enough weight in the mixture); d) run
the MCMC sampler on the remaining data with the prior described in c).
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In this section we collect some technical results. Lemmas �.� and �.� are needed to bound the entropy number of
the sieves Sn in�eorem �.�. Lemma �.� claims in essence that if some bounds on the range of the function f�
are known, then this knowledge can be incorporated into the prior on the coe�cients θ.

�eorem �.�� of [��] claims that if all the inner knots of a B-spline are simple, then the B-spline is continuous,
uniformly over its support, with respect to its knots. In Lemma �.� we establish a slightly stronger result (a
Lipschitz-type property): if we take two splines with the same coe�cients in their respective B-spline basis, then
the L∞ distance between the splines can be bounded by a multiple of the l∞ distance between the two sets of
knots, as long as the sets of knots are su�ciently sparse. First, we present a preliminary lemma. Denote the (r+ �)-
th order divided di�erence of a function h over the points t� ≤ ⋅ ⋅ ⋅ ≤ tr+� as [t�, . . . , tr+�]h = ([t�, . . . , tr+�]h −[t�, . . . , tr]h)�(tr+�−t�), with [ti]h = h(ti). If t� = ⋅ ⋅ ⋅ = tr+�, then de�ne [t�, . . . , tr+�]h = h(r)(t�)�r! for a function
h with enough derivatives at t�.

Lemma �.� Let i ∈ {�, . . . , r}, r ≥ �, (k�, . . . , kr+�) ∈ (�, �)r+�. Assume kv+� − kv ≥ δ > � for v = �, . . . , i − �, i +
�, . . . , r and ki+� − ki = �. For �xed x ∈ [�, �] take the function h(y) = (x − y)q−�+ with y ∈ [�, �] and q ≥ �.�en
the divided di�erence �[k�, . . . , kr+�]h� ≤ ��δr for x ≠ ki and any δ ≤ ��(q − �).
Proof: Notice that �h′(y)� = (q − �)(x − y)q−�+ ≤ (q − �) ≤ ��δ for x ≠ y, as q ≥ � and δ ≤ �

q−� . Next, if v = i − �,�[kv+�, kv+�]h� = �h′(kv+�)� ≤ ��δ; if v ≠ i−�, �[kv+�, kv+�]h� = �h(kv+�)−h(kv+�)���kv+�−kv+�� ≤ ��δ. We conclude�[kv+�, kv+�]h� ≤ ��δ as long as x ≠ ki .
For j = �, . . . , r, de�ne γ j =minv=�,...,r+�− j �kv+ j − kv � ≥ ( j − �)δ. Now we make use of�eorem �.�� from [��]

and the previous bound:

�[k�, . . . , kr+�]h� ≤ r−��
v=��r − �v

��[kv+�, kv+�]h�
γ� . . . γr

≤ �r(r − �)!δr ≤ �
δr

holds for all x ≠ ki .�is completes the proof of the Lemma.

Recall that sk,θ(x), x ∈ [�, �], is a spline of order q ≥ � with the coordinates θ in the B-spline basis and the
inner knots vector k.

Lemma �.� Let θ ∈ R j satis�es �θ�∞ ≤ M and let k, κ ∈ Kδ
j = {k ∈ K j ∶ m(k) ≥ δ}. �en �sk,θ − sκ,θ�∞ ≤

L�k − κ�∞, for L = � j(q + �)Mδ−(q+�) and any δ ≤ ��(q − �).
Proof: De�ne kl = (kl� , . . . , klj−q) = (κ�, . . . , κl , kl+�, . . . , k j−q) for l = �, . . . , j − q, such that k� = k and k j−q = κ.
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By (�.�) and the triangle inequality, we get

�sk,θ − sκ,θ�∞ = � j�
i=� θ iB

k�
i − j�

i=� θ iB
k j−q
i �∞ ≤ M� j�

i=�(Bk�
i − Bk j−q

i )�∞
≤ jMmax

�≤i≤ j �Bk�
i − Bk j−q

i �∞ ≤ jMmax
�≤i≤ j

j−q−��
l=�
�Bk l

i − Bk l+�
i �∞

≤ (q + �) jMmax
�≤i≤ j max

�≤l≤ j−q−� �Bk l
i − Bk l+�

i �∞.
�e last inequality in the above display follows from (�.�). Indeed, the inner knots of Bk l

i and Bk l+�
i di�er only at

the (l + �)-th entry.�erefore, according to (�.�), for each i there are at most (q+ �) nonzero terms �Bk l
i −Bk l+�

i �∞
in the last sum.

�eorem �.�� of [��] gives explicit expressions for the derivative of a B-spline with respect to one of its knots.
�ese expressions are in terms of the divided di�erences which satisfy the conditions of Lemma �.�, so that
combining this with Lemma �.� for r = q + � (the maximal number of knots in the support of a B-spline) yields
that this derivative is bounded in absolute value by �δ−(q+�), except at x = kll+�, where it is not de�ned.�en, as�kl − kl+��∞ ≤ �k − κ�∞, we obtain that, for x �= kll+�, l = �, . . . , j − q − �,

�Bk l
i (x) − Bk l+�

i (x)� ≤ �kl+�l+� − kll+�� sup
kll+�∈(�,�)

�∂Bk l
i (x)

∂kll+�
� ≤ ��k − κ�∞

δq+� .

Since splines are continuous for all q > �, so is sk,θ − sκ,θ and we conclude that the same bound must also hold
for x = kll+�. Combining the above two relations concludes the proof.

�e properties of B-splines allow to relate the range of the coe�cients of the approximating spline to the
range of the approximated function.�e following lemma generalizes Lemma � of [��] for non-equally spaced
knots.

Lemma �.� Let f ∈ Fα (so that (�.�) holds), a < b, ε > �. Assume that f (x) ∈ [a+ ε, b− ε] for all x ∈ [�, �].�en
there exists a positive constant δ = δ(Fα , ε) such that for any k ∈ K j, j ≥ q, such that M(k) ≤ δ, the coe�cients a
of the approximating spline sk,a in (�.�) can be taken to be contained in (a, b).
Proof: Fix q, j and inner knots k, assume I = [a, b], a < b and a + ε < f < b − ε, for some ε > �.

We use results from Section �.� of [��] on dual basis of B-splines. If {Bk,�, . . . , Bk, j} is the B-spline basis
associated with the inner knots k, then there exists a dual basis λ�, . . . , λ j of linear functionals such that, for each
i , r = �, . . . , j, λrBk,i = � if i = r and is � otherwise. As a consequence, we obtain that λi sk,a = ai , and since∑ j

i=� Bk,i(x) = �, it follows that λi c = c for any constant c and all i = �, . . . , j. �is dual basis is not necessarily
unique and, according to �eorem �.�� from [��], can be taken such that �λi f � ≤ C� supx∈Ii � f (x)� where Ii
represents the support of Bk,i and constant C� depends only on q. Each Ii consists of at most q adjacent intervals
in the partition induced by k and thus the length of Ii is bounded by qM(k).



�� CHAPTER �. ADAPTIVE PRIORS BASED ON SPLINES WITH RANDOM KNOTS

Let sk,a be such that (�.�) is ful�lled for f .�en, for any constant c,

�ai − c� = �λi sk,a − λi f + λi f − c� ≤ �λi(sk,a − f )� + �λi( f − c)�≤ C�Cf Mα(k) + C� sup
x∈Ii
� f (x) − c�.

Take c = inf x∈Ii f (x) and recall that f ∈ Fα ⊆ L(κα , Lα). Using the Lipschitz property,we derive that supx∈Ii � f (x)−
c� = supx∈Ii f (x) − inf x∈Ii f (x) ≤ Lα(qM(k))κα and therefore

�ai − inf
x∈Ii f (x)� ≤ C�Cf Mα(k) + C�Lα(qM(k))κα ≤ C�Mα∧κα(k).

In the same way, if we take c = supx∈Ii f (x), we derive that supx∈Ii � f (x) − c� ≤ Lα(qM(k))κα and thus �ai −
supx∈Ii f (x)� ≤ C�Mα∧κα(k).

Now for δ = (ε�(�C�))��(α∧κα) we conclude that if M(k) ≤ δ, then ai ≥ inf x∈Ii f (x) − C�Mα∧κα(k) ≥
inf x∈Ii f (x)− ε�� > a. For the same choice of δ we have ai ≤ supx∈Ii f (x)+C�Mα∧κα(k) ≤ supx∈Ii f (x)+ ε�� < b.
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5
Tracking of Conditional Quantiles

W� �������� the problem of constructing an on-line, recursive algorithm for tracking a conditional quan-
tile in a general setting.�e observations are assumed to be a time series, whose terms need not be independent.
We propose a recursive algorithm to track a conditional quantile of a level of our choice; both the level of the
quantile and the quantile itself do not need to be �xed. We establish an upper bound for the error of the algorithm,
which we then specify for di�erent conditions on the variability of the quantile function. From these results we
derive the convergence rates for the considered examples and present some numerical results.
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� .� I�����������

O�en in applications one wishes to recover a functional dependence between di�erent parameters of the underly-
ing distribution based on observations from that distribution. Non-parametric model regression is one common
approach to this problem. Strictly speaking, in regression analysis we are interested in estimating the conditional
expectation of one random variable given another one.�us, certain moment conditions in regressionmodels are
unavoidable. Moreover, in additive regression, stronger structural conditions on the noise are usually imposed,
for example, normality of errors. However, sometimes it is desirable to minimize the conditions on the moments
(and the form) of the distribution of the noise. If, for example, we only assume that the error at each moment
has a quantile of certain �xed level (for identi�ability purposes), then we obtain the so-called quantile regression
model, �rst introduced into the literature in [�]; see [��] for a nice account on this topic.

�e quantile regression model is quite important in �elds such as econometrics, social sciences and ecology.
�ere, one o�en studies response variables whose relation with its measured predictors is complex. In these
cases the conditional expectation of the response variable might simply be insensitive to these relations and will
provide a poor description of the underlying phenomenon. Error bounds on certain regression estimates can be
viewed as crude quantile regressions [��] but these quantiles can be estimated directly. By estimating conditional
quantiles of di�erent levels, rather than the conditional mean we get a much more comprehensive and robust
description of the data.�is seems to be of particular relevance in applications, for example in ecology, where
data o�en displays heterogeneous variances [��].

In this chapterwe treat the problemof recovering a quantile regression function in an on-line fashion. Precisely,
suppose that at each time point k ∈ N we observe a random variable Xk and the problem is to recover its quantile
of level αk ∈ (�, �) by using observations available at this time moment. An important complicating factor of our
framework is that we do not assume the traditional independence of the observations. In fact, the observations
can be arbitrarily dependent so that by the time moment k we have observed Xk = (X�, . . . , Xk) and we would
like to recover the conditional αk-quantile of Xk+� given Xk .

Moreover, it is desirable to design an algorithm such that the estimate of the quantile at the current time
moment is based on the estimate of the quantile at the previous time moment and a small correction based on the
current observation.�is allows us to bypass the need to use optimization algorithms to recuperate the quantile
regression function which is standard in quantile regression and brings us to the area of stochastic approximation
algorithms. �e idea of stochastic approximation algorithm was �rst proposed by [��] and since then a huge
amount of literature has appeared on this topic (cf. Chapter �).�ese algorithms run in parallel with the collection
of data and are driven by a gain function.�e gain, when properly rescaled by a so-called step size, can be used to
improve any approximation for a quantity of interest (a conditional quantile in our case). Sequential application
of this procedure results in a recursive, tracking algorithm.

� .� P������������

Suppose that at each time k ∈ N we observe a random variable Xk so that by a time moment n we have n
observations X�, . . . , Xn. Denote Xk = (X�, . . . , Xk), k ∈ N, with the convention that X� is an empty vector and
let X represent the (common) support of each observation. Herea�er, vectors are represented by bold symbols
and can be upper or lowercase letters.
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For some known �xed values αk ∈ (�, �), k ∈ N, let θk = θk(xk−�) = θk(xk−�, αk), the αk-quantile of the
conditional distribution of Xk given Xk−� = xk−� = (x�, . . . , xk−�):

θk(xk−�) = inf �θ ∶ P(Xk ≤ θ�Xk−� = xk−�) ≥ αk�.
Let Fk(xk �xk−�) denote the (unknown) conditional distribution function of Xk − θk(xk−�) given Xk−� = xk−�.
�us, Fk(��xk−�) = αk , k ∈ N.

Our goal is, loosely speaking, to track down the conditional quantile θk based on the information available to
us at time k. More precisely, at each time moment k ∈ N we want to estimate θk(Xk−�) by using the observations
Xk = (X�, . . . , Xk) available at that moment. Ideally, we would like our procedure to approach the evolving
conditional quantile θk(Xk−�) as time progresses. If, however, this is impossible, then the procedure should at
least stay in proximity of θk(Xk−�), the evolving conditional quantile, as close as possible. Until now we have not
imposed any assumption on the observations X�, X�, . . ., these are arbitrarily distributed and have an arbitrary
dependence structure. Clearly, the stated problem in its full generality has no feasible solution. �us, in order
to obtain some non-void results, we need to impose some assumptions on the conditional distributions of Xk

(given Xk−� = xk−�), k ∈ N, while at the same time trying to keep these conditions as weak as possible.
Now we are ready to introduce the conditions on the conditional distributions Fk(xk �xk−�) which we are

going to use in the derivation of the main result.

(C�) For some positive b, B, δ, the following inequality holds for any ε ∈ [−δ, δ]:
b�ε� ≤ inf

xk−�∈X k−� �Fk(ε�xk−�) − αk � ≤ sup
xk−�∈X k−�

�Fk(ε�xk−�) − αk � ≤ B�ε�, k ∈ N.
(C�) �e conditional quantiles θk(Xk−�) take values in some compact set Θ so that

sup
k∈N sup

xk−�∈X k−�
�θk(xk−�)� ≤ sup

θ∈Θ �θ� = CΘ ,

for some (known) constant CΘ.

Condition (C�) is ful�lled if, for example, the conditional distributions Fk(xk �xk−�), are absolutely continuous
with the conditional densities fk(xk �xk−�) such that for some positive b, B, δ,

� < b ≤ inf
xk−�∈X k−� fk(xk �xk−�) ≤ sup

xk−�∈X k−�
fk(xk �xk−�) ≤ B, k ∈ N.

for almost all (with respect to the Lebesgue measure) xk ∈ [−δ, δ] ∩X .
If X is a discrete set then condition (C�) is inadequate. We require instead

(D�) For positive constants c < � < δ, the following inequality holds for any xk ∈ [−δ, δ]∩X withX = Z (w.l.g.):

� < c ≤ inf
xk−�∈X k−� pk(xk �xk−�) ≤ sup

xk−�∈X k−�
pk(xk �xk−�), k ∈ N.

Remark �.� Notice that, even under the above conditions, we deal with a rather general framework: the obser-
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vations can be dependent and not identically (marginally) distributed. Besides, our problem is stated in the robust
setting, in the sense that we do not assume anything about the moments of the observations Xk – they simply may
not exist.

Conditions (C�), (D�) and (C�) are rather natural for the most important particular case of independent
observations Xk , k ∈ N. In this case the conditional αk-quantiles θk become unconditional (θk does not depend
on Xk) and bounded uniformly in k according to condition (C�). �e observations can then be expressed in
the form Xk = θk + ξk , k ∈ N, with independent noises ξk . Condition (C�) means that the noises ξk have zero
αk-quantiles respectively and their probability distributions behave regularly in the neighborhood of zero in
the sense that they degenerate neither into zero nor into delta-function. Alternatively, when X is discrete, (D�)
requires the distribution function of the noises to jump by at least c close to zero.

Conditions (C�), (D�) and (C�) do not seem too restrictive for another important case of Markov model
observations: in this case the conditional density fk depends only on two arguments xk , xk−�.

Introduce the indicator function 1{A} of a set A, the function sign(x) = x��x� for x ≠ � and sign(�) = �, and
the function

S̄k(u, v) = S̄k(u, v , αk) = αk − 1{u − v < �} + c��, k ∈ N. (�.�)

where c is the constant from condition (D�) if X is discrete and c = � otherwise.
Let {γk , k ∈ N} be a nonnegative sequence bounded by some constant Γ:

� ≤ γk ≤ Γ, k ∈ N. (�.�)

Next, for some positive, �xed κ introduce the constant

C̄ = CΘ + Γ(� + c��) + κ, (�.�)

where constants CΘ and Γ are from conditions (C�) and (�.�), respectively, and as before, c is the constant from
condition (D�) if X is discrete and c = �, otherwise.

We are now ready to de�ne our algorithm for tracking a conditional quantile:

θ̂k = ΠC̄�θ̂k−� + γk S̄k(Xk , θ̂k−�)�, θ̂� ∈ Θ, k ∈ N, (�.�)

where θ̂� ∈ Θ some initial value�, the sequence of step sizes {γk , k ∈ N} satis�es the restriction (�.�), the constant
C̄ is de�ned by (�.�) and Πdx = [x]d−d = x 1{�x� ≤ d} + d sign(x)1{�x� > d} is the projection operator on the
interval [−d , d].

If X is a discrete set, then we de�ne ΠX x, the projection operator on X , as ΠX x = argminy∈X �x − y�. We
then use a modi�ed version of (�.�),

θ̂k = ΠC̄�θ̂k−� + γk S̄k(Xk ,ΠX θ̂k−�)�, θ̂� ∈ Θ, k ∈ N. (�.�)

�We can take for example θ̂� = �.
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By de�nition, the sequence {θ̂k , k ∈ N} is trivially bounded :

�θ̂k � ≤ C̄ , k ∈ N. (�.�)

It is easy to see that the algorithm (�.�) can be rewritten as

θ̂k = θ̂k−� + γkSk(Xk , θ̂k−�), θ̂� ∈ Θ, k ∈ N, (�.�)

where the function Sk(u, v) (which we call shi� function) is de�ned as follows:

Sk(u, v) = S̄k(u, v) + S̃k(u, v), k ∈ N. (�.�)

Here S̄k(u, v) is given by (�.�) and, for all k ∈ N,
S̃k(u, v) = γ−�k �C̄ sign �v + γk S̄k(u, v)� − (v + γk S̄k(u, v))� 1��v + γk S̄k(u, v)� > C̄� (�.�)

if γk ≠ �, and without loss of generality we put S̃k(u, v) = � if γk = �. In (�.�), the constant C̄ is de�ned by (�.�)
and the sequence (γk , k ∈ N) satis�es the restriction (�.�).

� .� M��� �������

In this section we formulate the main result of the chapter. We start with two technical lemmas which we shall
need in the proof of the main theorem. For the sake of brevity, denote θk = θk(Xk−�).
Lemma �.� Let the functions S̃k(u, v), k ∈ N, be de�ned by (�.�) and constant C̄ = CΘ + Γ(� + c��) + κ by (�.�),
where c is as in (D�) ifX is discrete and c = � otherwise.�en �S̃k(u, v)� ≤ �+c��, uniformly over u ∈ R and �v� ≤ C̄.
Also, the relations

S̃k(u, v) = −G̃k(θk , u, v)(v − θk), k ∈ N, (�.��)

hold for some functions G̃k(θk , u, v) such that � ≤ G̃k(θk , u, v) ≤ κ−�, uniformly over u ∈ R, θk ∈ Θ and �v� ≤ C̄.
Lemma �.� Let the functions Sk(u, v), k ∈ N, be de�ned by (�.�). Let c be as in condition (D�) for discreteX and
c = � for continuous X .�en �Sk(u, v)� ≤ � + c, k ∈ N, uniformly over u ∈ R and �v� ≤ C̄. Moreover, if conditions
(C�), (C�) are ful�lled, then

E�Sk(Xk , v)�Xk−�� = −Gk(θk , v)(v − θk), k ∈ N, (�.��)

for some functions Gk(θk , v) = Gk(θk , v ,Xk−�) such that � < h ≤ Gk(θk , v) ≤ H with probability �, uniformly
over θk ∈ Θ and �v� ≤ C̄ (the constants h,H depend on δ, CΘ, C̄ and κ; they also depend on either b and B for
continuous X or on c for discrete X .)
Remark �.� An informal interpretation of Lemma �.� is as follows. Firstly, the shi� function Sk(Xk , v) gives the
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“right average direction” from v towards the conditional quantile value θk. Secondly, the “average length” of the shi�
Sk(Xk , v) is a controlled multiple of the distance between v and the conditional quantile value θk.

�e next theorem is the main result of this chapter.

�eorem �.� (Error bound)
Let conditions (C�), (C�) be satis�ed, let the estimator θ̂k be de�ned by (�.�) with step sizes {γk , k ∈ N} satisfying
(�.�) and let the constants h and H be from Lemma �.�. De�ne δk = θ̂k − θk and ∆θk = θk − θk−�, k ∈ N (de�ne
θ� = �).�en for any p ≥ �, any n, n� ∈ N such that n� ≤ n and γkH ≤ � for all n� ≤ k ≤ n, the following relation
holds

E�δn�p ≤ C� exp�− ph n�
k=n�+�

γk�+C� � n�
k=n�+�

γ�k�p��+C�E� max
n�+�≤k≤n �θk − θn� �p�+C�E� n�

k=n�+�
γk �∆θk ��p (�.��)

for some positive C�,C�,C� and C�, constants which depend only on p, CΘ, C̄ and H.

�e proofs of the theorem and the lemma are deferred to the last section.

Remark �.��e upper bound (�.��) depends on the levels αk, k ∈ N via the constants CΘ, h and H.�e closer αk
is to one (resp. zero), the bigger (resp. smaller) the quantile’s value θk, and therefore the constant CΘ becomes bigger.
�ere is too little probability mass in a neighborhood of an extreme quantile, so condition (C�) is more di�cult to
ful�ll as αk gets closer to � (or zero).�is makes constants δ and b smaller, which in turn makes constant h smaller
and constant H bigger. �ese changes in CΘ, h and H in turn lead to an increase of the �nal constants C�,C�,C�

and C� in inequality (�.��). As for the dependence on p, as it appears from the proof of the theorem, the bigger p,
the bigger the constants C�, C�, C� and C�.

Remark �.� In the relation (�.��) below one can derive an alternative bound

max
n�+�≤k≤n �Rk � ≤ max

n�+�≤k≤n � k�
i=n�+�

γiMi(Xi , θ i , θ̂ i−�)� + n�
i=n�+�

e−hγ i �∆θ i �,
which would lead to an alternative �nal statement for the theorem:

E�δn�p ≤ C� exp�− ph n�
k=n�+�

γk� + C� � n�
k=n�+�

γ�k�p�� + C�E� n�
k=n�+�

e−hγk �∆θk ��p .
Remark �.� By analyzing the proof of the theorem, one can see that the particular form of the shi� function
Sk(u, v) is not important, it is the property (�.��) for the quantity E�Sk(Xk , v)�Xk−�� and the fact that the θ̂k,
k ∈ N, are bounded that are really needed in the proof. �erefore, any shi� function Sk(Xk , v) for which Lemma
�.� holds and θ̂k are bounded will do the job. For example, Lemma �.� (and therefore �eorem �.�) holds for the
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following shi� function Sk(u, v):
Sk(u, v) = S̄k(u, v)1��v� ≤ CΘ + δ� − v 1��v� > CΘ + δ�, k ∈ N. (�.��)

�us, one can use the shi� function (�.��) in the algorithm (�.�). Actually, we can establish Lemma �.� for the shi�
function (�.��) uniformly over all v ∈ R (instead of just uniformly over �v� ≤ C̄).

�e result of the theorem – inequality (�.��) – is given in a non-asymptotic form as an explicit upper bound
for the error of the algorithm and is in essence determined by the choice of a time moment n� and the step sizes
γk , k = n�, . . . , n.

If we analyze the right hand side of (�.��), then we see that the second term is small if the sum ∑n
k=n�+� γ�k

is small.�is will hold if, for example, the series∑k∈N γ�k is convergent and n� is su�ciently large. On the other
hand, in order to make the �rst term small the sum∑n

k=n�+� γk should be su�ciently large, which will hold if, for
example, the series∑k∈N γk diverges and the di�erence between n� and n is large enough.�ese are the classical
conditions for the step sizes of the Robbins-Monro type algorithms and well known in the literature. Intuitively,
if the sum∑n

i=n�+� γ�i is small, then the algorithm can “approach” θn arbitrarily closely, and if the sum∑n
k=n�+� γk

is big, then algorithm can “reach” any point θ ∈ Θ.�e value n� and the di�erence between the time moments
n� and n represent a “burn-in” time for the algorithm. Recall that the algorithm starts from an arbitrary point
θ̂� and therefore some time is needed for the algorithm to get adjusted and to start to really track the dri�ing
quantile parameter θn.

�e third and the forth terms in the right hand side of (�.��) can be arbitrarily large in general if we do not
impose conditions that regulate the evolution of the parameter θk , k ∈ N. We discuss this problem in more detail
in the next section, where we also consider examples of such conditions.�e basic idea is as follows: the less the
conditional quantile is allowed to vary, the better the tracking algorithm performs.

� .� A����������� �� ��� ���� ������

In this section we consider some examples of situations when we can apply�eorem �.�. From now on, by c and
C we denote universal constants which can be di�erent in di�erent expressions.

First of all note that we can write Xk = θk(Xk−�)+ ηk(Xk), k ∈ N, for ηk such that P(ηk(Xk) ≤ ��Xk−�) = αk .
Conditions (C�) and (C�) are satis�ed if, for example, it is possible to write ηk(Xk) = σk(Xk)ξk , i.e.,

Xk = θk(Xk−�) + σk(Xk)ξk , k ∈ N,
and if the following requirements hold: for some constants υ�, υ�

� < υ� ≤ inf
xk∈Rk

σk(xk) ≤ sup
xk∈Rk

σk(xk) ≤ υ� <∞, k ∈ N; (�.��)

the noise terms ξk are independent with densities fk(x), respectively, such that, for some constants δ, a and A,

� < a ≤ inf�x�≤δ fk(x) ≤ sup�x�≤δ fk(x) ≤ A, k ∈ N;
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and
sup

xk−�∈Rk−�
�θk(xk−�)� ≤ CΘ , k ∈ N.

�ese conditions become somewhat unnatural as k increases – the functions σk and θk have arguments of growing
dimensions. However, the above conditions are reasonable if the observations {Xk , k ∈ N} form a Markov chain
of order, say, p:

Xk = θk(Xk−�, . . . , Xk−p) + σk(Xk−�, . . . , Xk−p)ξk , k ∈ N,
with some initial X�, X−�, . . . , X�−p.

Of course, it is impossible to provide any bound for the quality of the recursive algorithm by using�eorem
�.� if nothing is known about the behavior of the increments ∆θk = θk − θk−�, k ∈ N.

� .� .� C������� ��������

Apart from conditions (C�) and (C�), assume now the strong model condition θk(Xk−�) = θ�, almost surely,
k ∈ N, for some unknown constant quantile θ�, (i.e., ∆θk = �, k ∈ N). In essence, we have a parametric setup.
Clearly, in this case the third and the forth terms in the right hand side of (�.��) vanish. Take γk = (Cγ log k)�k
and n� = �qn� for some q ∈ (�, �), where �a� denotes a whole part of the number a ∈ R. Let n� ≥ �, which is
satis�ed if n ≥ ��q = Nq.�en since for su�ciently large Cγ and n ≥ Nq

n�
k=n�+�

γk ≥ Cγ log n�
n�

k=n�+�
�
k
≥ log n

�h
,

the �rst term in the right hand side of (�.��) is bounded as follows:

C� exp� − ph n�
k=n�+�

γk� ≤ C�n−p��. (�.��)

Using∑n
k=n�+� γ�k ≤ c(log n)�n−�, we bound the second term:

C�� n�
k=n�+�

γ�k�p��≤ C�n−��� log n�p , (�.��)

which leads to the parametric (up to a logarithmic term) convergence rate

max
n≥Nq

E� √n
log n

�δn��p ≤ c. (�.��)

Interestingly,we cannot get rid of the log factor in the above statement. In some sense, one can see this as “payment”
for recursiveness and robustness. Indeed, the bound (�.��) holds for any moment p ≥ �, whereas no moment
conditions were assumed for the original observations {Xk , k ∈ N}.

Besides, from inequality (�.��) one can derive the convergence θ̂n → θ� with probability � with the rate
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n−(���−ε) for any ε > �. Indeed, by using (�.��) for p > ε−� and the Markov inequality, we obtain that for any c > �
∞�
n=�P�n���−ε�θ̂n − θ�� > c� ≤

∞�
n=�

np��−pεE�δn�p
cp

≤ C ∞�
n=�
(log n)p
npε <∞ (�.��)

and the convergence θ̂n → θ� as n →∞ with probability � with the rate n−(���−ε) follows by the Borel-Cantelli
Lemma.

� .� .� P����������� ���������� �������� ����������

Suppose now that the increments of the conditional quantile ∆θk = θk − θk−�, k ∈ N, satisfy the following
restrictions

E�∆θk �p ≤ ρpk , k ∈ N, (�.��)

for some p ≥ � and some positive sequence ρk decreasing to zero. One can interpret this condition as a requirement
for the p-th moment of the oscillations ∆θk to “slow down” over time. �roughout this section, assume the
polynomial restriction ρk = cρk−β for some cρ > �, β ≥ �.

Consider �rst the case β ≥ ���. It turns out that in this case the oscillations of the sequence θk slow down so
quickly that an appropriately chosen algorithm step of leads to the same quality as if function θ(t) were constant.
Indeed, take γk and n� to be the same as in the case of constant quantile (see Section �.�.�).�en the �rst and the
second terms of (�.��) can be bounded in the same way as in (�.��) and (�.��), whereas the third and the forth
terms are bounded by a multiple of E�∑n

k=n�+� �∆θk ��p. By the Hölder inequality, we evaluate

E� n�
k=n�+�

�∆θk ��p ≤ (n − no)p−� n�
k=n�+�

E�∆θk �p ≤ C(n − no)pρpn�
≤ c�(n − n�)n−β� �p ≤ Cn−(β−�)p ≤ Cn−p��, (�.��)

which leads to the same bound as (�.��) with another constant c.

Now consider the case � < β < ���. Let γk = Cγ(log k)���k−�β��, n� = n − n�β��(log n)���. By using the
elementary inequality (� + x)α ≤ � + αx for � < α < � and x ≥ −�, we obtain that for su�ciently large n (i.e.,
n ≥ N� = N�(β)) and su�ciently large constant Cγ

n�
k=n�+�

γk ≥ Cγ(log n�)��� n�
k=n�+�

�
k�β�� ≥ Cγ(log n�)���� n

n�

dx
x�β��

= Cγ(log n�)���
� − �β�� �n�−�β�� − n�−�β���� − n�β��−�(log n)�����−�β���

≥ Cγ(log n�)���
� − �β�� �n�−�β�� − n�−�β���� − n�β��−�(log n)���(� − �β��)��

= Cγ(log n�)���(log n)��� ≥ log n
�h

.

�is yields the same bound for the �rst term of the right-hand side of the inequality (�.��), similar to (�.��): for
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n ≥ N� and su�ciently large constant Cγ

C� exp�− ph n�
k=n�+�

γk� ≤ C�n−p��.

Let us bound the second term on the right-hand side of inequality (�.��): for n ≥ N� = N�(β)
C�� n�

k=n�+�
γ�k�p�� ≤ C�(log n)���n−�β��� (n − n�)�p�� ≤ c�(log n)���n−β���p .

For su�ciently large n (i.e., n ≥ N� = N�(β)) the third and the fourth terms on the right-hand side of inequality
(�.��) are bounded similarly to (�.��) by the expression

E�C n�
k=n�+�

�∆θk ��p ≤ c�(n − n�)n−β� �p ≤ C�(log n)���n−β���p .
Finallywe obtain that for� < β < ��� and su�ciently large constantCγ in the algorithm step γk = Cγ(log k)���k−�β��

max
n≥Nβ

E� nβ��(log n)��� �δn��p ≤ c,
where Nβ =max(N�,N�,N�) is the burn-in period of the algorithm.

Remark �.� If we choose γk = Cγ(log k)α�k−α and n� = n − nα(log n)α� , for some � < α < �, α�, α� ≥ � and
α� + α� ≥ � in case � < β < ���, then we get the following bound of the convergence rate: for su�ciently large n and
su�ciently large constant Cγ

E�δn�p ≤ C�n−min(β−α, α��)(log n)max(α� , α�+α���)�p .
�us , the choice α = �β��, α� = ���, α� = ��� is optimal in the sense of the minimum of the right-hand side of the
above inequality.

Remark �.�Much in the same way as for (�.��), we can establish that for any ε > �, limn→∞ nβ��−ε�δn� = � with
probability �.

Finally, consider the case β = �, i.e., we assume the following weak requirement: E�∆θk �p ≤ c, k ∈ N, for some
uniform constant c. Take n − n� = N , γk = γ for some N ∈ N, γ > �.�eorem �.� then implies that

max
n≥N E�δn�p ≤ C�e−phNγ + C�Np��γp + C�Npc + C�Npγpc = E .

We thus have that the algorithm will track down the conditional quantile in the proximity of size E, which we
can try to minimize by choosing appropriate constants N and γ.



�.�. APPLICATIONS OF THE MAIN RESULT ���

� .� .� L �������� �������� : ����������� �� ��������� �� ������������

Consider the model
Xk = θ(k�n) + σk(Xk)ξk , k = �, �, . . . , n,

where the σk ’s satisfy (�.��) and θ(t), t ∈ [�, �] is an unknown Lipschitz function, i.e., θ(⋅) ∈ L(L, β) = {g(⋅) ∶�g(t�) − g(t�)� ≤ L�t� − t��β , t�, t� ∈ [�, �]}, for some � < β ≤ � and L > �. �e parameter n has a meaning of
frequency of the observations, the number of observations per time unit.�is setting is typical for the problem
of nonparametric regression estimation.�e nonparametric median estimation problem has been studied in [��]
and [��]) for such an asymptotic regime. Although this asymptotic regime is not really practical for recursive
procedures – the step size is constant and depends on the observation frequency n, and so if n changes, the whole
model changes – we derive the asymptotic results for this setting as consequences of our non-asymptotic general
�eorem �.�.

Let γk ≡ Cγ(log n)(�β−�)�(�β+�)n−�β�(�β+�) for k = �, . . . , n, and de�ne

k� = k�(n) = k − (log n)��(�β+�)n�β�(�β+�),
for all k ≥ Kn = (log n)��(�β+�)n�β�(�β+�). For su�ciently large Cγ

k�
i=k�+�

γi = Cγ(log n)(�β−�)�(�β+�)n−�β�(�β+�)(k − k�) ≥ Cγ log n ≥ log n
�h

,

which leads to

exp�− ph k�
i=k�+�

γi� ≤ cn−p��.
Now we have

� k�
i=k�+�

γ�i�p�� ≤ C�(log n) �β−��β+� n− �β
�β+� (k − k�)����p = C�(log n) �β

�β+� n− β
�β+� �p .

By the Lipschitz property of the function θ(t), with θ i = θ(i�n),
max

k�+�≤i≤k �θ i − θk� �p ≤ c�k − k�n
�βp ≤ C�(log n) �β

�β+� n− β
�β+� �p .

Since �∆θ i � ≤ L� in − i−�
n �β ≤ cn−β,

� k�
i=k�+�

γi �∆θ i ��p ≤ c�(k − k�)γk�n−β�p ≤ C�n−β log n�p .
Combining the last four inequalities with the bound (�.��), we derive that for su�ciently large Cγ

sup
θ(⋅)∈L(L,β)max

k≥Kn
E�δk �p ≤ C�(log n) �β

�β+� n− β
�β+� �p . (�.��)
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In the derivation of this inequality,we used the uniformity of all the bounds over k ≥ Kn = (log n)��(�β+�)n�β�(�β+�)
and over the Lipschitz functional class θ(⋅) ∈ L(L, β).�e sequence Kn has a meaning of “burn-in” period.

Notice that the resulting convergence rate coincides (up to a logarithmic factor) with the minimax rate over
the Lipschitz class L(L, β) in the problem of minimax regression function estimation.

� .� N�������� �������

We now treat a small numerical example to illustrate our results.�is example can be found in [��]. For t(n) =���n − �, ��n − �, . . . , � − ��n, � − ��n� we make observations from

Xi = f (ti) + σ(ti)ξi , i = �, . . . , n,
where the ξi ’s are independent standard normal random variables.�e function f and standard deviation of the
noise σ are taken, for t ∈ [−�, �], as

f (t) = sin(t)
t

, σ(t) = �.� exp(� − t).
As explained in the previous section, we technically have a di�erentmodel for each value of n and the bound given
in �eorem �.� becomes a statement about asymptotics in the sampling frequency n. At time k, for α ∈ (�, �),
we are interested in estimating the α-th quantile of Xk , call it θk , based on the data Xk = (X�, . . . , Xk). It is
straightforward to see that we can write θk = θα,k = �α(tk), where

�α(t) = f (t) + σ(t)Φ−�(α), t ∈ [−�, �],
where Φ is the cumulative distribution function of a standard normal random variable from where we assume
that the quantile function �α is in L��[−�, �]�.

In our numerical study we took γk ≡ Cγ(log(n)�n�)��� for Cγ = �.�, n ∈ {���, ���, ���, ����, �����} and
α ∈ {�.�, �.��, �.�, �.��, �.�}. Our tracking sequence is then de�ned as

θ̂k = ΠC̄�θ̂k−� + γk�α − 1{Xk < θ̂k−�}��, k = �, . . . , n, (�.��)

as de�ned in (�.�) where we took θ̂� = � and C̄ = �. In Figure �.�.� we show the functions θα(t) which are
obtained by linearly interpolating the sequence (�.��), for each n and each α. (Note that to get the tracking se-
quence only requires knowledge of the value of the indicators1{Xk < θ̂k−�} andnot of the actual observations Xk .)
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Figure �.�.�: Results of the tracking algorithm. All pictures contain the data (blue dots), the true quantile function for the
chosen values of α (black lines), and the respective tracking sequences (tones of red). To each picture corresponds a speci�c
sample size. On the �rst row we compare, for n = ���, the raw tracking sequence (le�) with a smoothed version of it (right).
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�e burn-in period of the algorithm is quite noticeable in the pictures in Figure �.�.� as is the improvement in
the quality of the approximations as n increases.�e constantCγ has to be picked large enough so as not to hinder
the capability of the tracking sequence to “catch up” with the signal. Picking Cγ too large will however cause
the tracking sequence to make large jumps (since γk is larger for small n). �is can be partially compensated
for, by smoothing out the resulting tracking sequence via, say, a moving window average, i.e., replacing each
θ̂k by the mean of θ̂�∨(k−w), . . . , θ̂k , . . . , θ̂n∧(k+w) for some w ∈ N. (For the top right picture in Figure �.�.� we
took w = ��.�n����.)�is somewhat improves the results although its clear that the approximation of the more
extreme quantiles (�.� and �.�) is quite crude for low values of n. We will revisit this example in the next chapter,
in Section �.�.�.

� .� P�����

In this section we omit mentioning k ∈ N as we agree that all the relations where the index k is involved hold
for all k ∈ N. We will also agree that the constant c is the constant from condition (D�) if X is discrete and c = �
otherwise.

Lemma �.� Let the functions S̃k(u, v), k ∈ N, be de�ned by (�.�) and constant C̄ = CΘ + Γ(� + c��) + κ by (�.�),
where c is as in (D�) ifX is discrete and c = � otherwise.�en �S̃k(u, v)� ≤ �+c��, uniformly over u ∈ R and �v� ≤ C̄.
Also, the relations

S̃k(u, v) = −G̃k(θk , u, v)(v − θk), k ∈ N, (�.��)

hold for some functions G̃k(θk , u, v) such that � ≤ G̃k(θk , u, v) ≤ κ−�, uniformly over u ∈ R, θk ∈ Θ and �v� ≤ C̄.
Proof: For u ∈ R, θk ∈ Θ, �v� ≤ C̄ put

G̃k(θk , u, v) = − S̃k(u, v)v − θk if v ≠ θk . (�.��)

and G̃k(θk , u, θk) = �. Let us show that functions G̃k(θk , u, v) satisfy the assertions of the lemma. First of all,
note that the representation (�.��) holds true. In view of (�.��), it is trivial if v ≠ θk . �e representation (�.��)
holds true also for v = θk since G̃k(θk , u, θk) = � by the de�nition and S̃k(u, θk) = � for all u ∈ R and θk ∈ Θ, as�θk + γk S̄k(u, θk)� ≤ CΘ + Γ(� + c��) ≤ C̄.

Now we need to prove that � ≤ G̃k(θk , u, v) ≤ κ−� uniformly over u ∈ R, θk ∈ Θ and �v� ≤ C̄. Since
G̃k(θk , u, θk) = �, we consider only the case v ≠ θk . If γk = � or �v + γk S̄k(u, v)� ≤ C̄, then S̃k(u, v) = � so
that, according to (�.��), G̃k(θk , u, v) = � and the lemma is proved also for these cases.

It remains to consider the case when v ≠ θk , γk > � and �v + γk S̄k(u, v)� > C̄. If we have additionally that�v� ≤ C̄, then C̄ < �v+γk S̄k(u, v)� ≤ �v�+ �γk S̄k(u, v)� ≤ C̄+γk(�+c��).�en � ≤ γ−�k (�v+γk S̄k(u, v)�− C̄) ≤ �+c��,
or equivalently

� ≤ γ−�k �v + γk S̄k(u, v) − C̄ sign(v + γk S̄k(u, v))� ≤ � + c��, u ∈ R, �v� ≤ C̄ ,
which implies in passing the �rst assertion of the lemma: �S̃k(u, v)� ≤ � + c��, u ∈ R, �v� ≤ C̄. Obviously, v +
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γk S̄k(u, v) is of the same sign as v since �S̄k(u, v)� ≤ �+c�� and γk ≤ Γ, whereas C̄ = CΘ+Γ(�+c��)+κ > Γ(�+c��).
�is implies that v+γk S̄k(u, v)− C̄ sign(v+γk S̄k(u, v)) is also of the same sign as v because �v+γk S̄k(u, v)� > C̄.
Now, from �v� ≥ �v + γk S̄k(u, v)� − �γk S̄k(u, v)� ≥ C̄ − Γ(� + c��) = CΘ + κ, it follows that v − θk is of the same
sign as v for all θk ∈ Θ. Moreover, �v − θk � ≥ �v� − �θk � ≥ CΘ + κ − CΘ = κ.�us we showed that if u ∈ R, θk ∈ Θ,�v� ≤ C̄ and v ≠ θk , then

� ≤ γ−�k �v + γk S̄k(u, v) − C̄ sign(v + γk S̄k(u, v))�I{�v + γk S̄k(u, v)� > C̄}
v − θk ≤ �

κ
. (�.��)

In view of (�.�) and (�.��), the expression in the middle of the relation (�.��) is nothing else but G̃k(θk , u, v)
for v ≠ θk . By using G̃k(θk , u, θk) = � and the relation (�.��), we obtain the second assertion of the lemma:

� ≤ G̃k(θk , u, v) ≤ �
κ
, u ∈ R, θk ∈ Θ, �v� ≤ C̄ .

Lemma �.� Let the functions Sk(u, v), k ∈ N, be de�ned by (�.�). Let c be as in condition (D�) for discrete X and
c = � for continuous X .�en �Sk(u, v)� ≤ � + c, k ∈ N, uniformly over u ∈ R and �v� ≤ C̄. Moreover, if conditions
(C�), (C�) are ful�lled, then

E�Sk(Xk , v)�Xk−�� = −Gk(θk , v)(v − θk), k ∈ N, (�.��)

for some functions Gk(θk , v) = Gk(θk , v ,Xk−�) such that � < h ≤ Gk(θk , v) ≤ H with probability �, uniformly
over θk ∈ Θ and �v� ≤ C̄ (the constants h,H depend on δ, CΘ, C̄ and κ; they also depend on either b and B for
continuous X or on c for discrete X .)
Proof: �e de�nition (�.�) implies the obvious bound �S̄k(u, v)� ≤ � + c��. By Lemma �.�, �S̃k(u, v)� ≤ � + c��
uniformly in u ∈ R and �v� ≤ C̄. �erefore �Sk(u, v)� ≤ �S̄k(u, v)� + �S̃k(u, v)� ≤ � + c uniformly in u ∈ R and�v� ≤ C̄, which proves the �rst assertion of the lemma.

For θk ∈ Θ and �v� ≤ C̄ de�ne Gk(θk , θk) = b+B
� , and for v ≠ θk de�ne

Gk(θk , v) = −E�Sk(Xk , v)�Xk−��
v − θk = −E�S̄k(Xk , v)�Xk−��

v − θk − E�S̃k(Xk , v)�Xk−��
v − θk . (�.��)

Representation (�.��) holds immediately for v ≠ θk . In case v = θk , S̃k(u, θk) = � for all u ∈ R and θk ∈ Θ
since �θk + γk S̄k(u, θk)� ≤ C̄, and E�S̄k(Xk , θk)�Xk−�� = αk − P�Xk − θk(Xk−�) < ��Xk−�� = αk − Fk(��Xk−�) = �
by the de�nition of the conditional distribution function Fk . �erefore, in case v = θk ∈ Θ, we obtain that
E�Sk(Xk , θk)�Xk−�� = E�S̄k(Xk , θk)�Xk−�� + E�S̃k(Xk , θk)�Xk−�� = � and the relation (�.��) holds again. It
remains to prove that Gk(θk , v) satis�es the inequality � < h ≤ Gk(θk , v) ≤ H uniformly over θk ∈ Θ and �v� ≤ C̄.

For θk ∈ Θ, �v� ≤ C̄ and v ≠ θk , introduce the function
Ḡk(θk , v) = −E�S̄k(Xk , v)�Xk−��

v − θk = Fk(v − θk �Xk−�) − αk − c��
v − θk . (�.��)
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Since the conditional distribution function Fk has zero quantile of level αk ∈ (�, �), function Ḡk(θk , v) is always
non-negative. In view of (C�) and (D�), we have that for � < �v − θk � ≤ δ, almost surely,

b ≤ Ḡk(θk , v) ≤ B and
c
�
≤ Ḡk(θk , v) ≤ �,

for respectively X a continuous set and for X a discrete set.
Suppose now that �v − θk � > δ.�en obviously Ḡk(θk , v) ≤ (�+ c��)δ−�. On the other hand, as �θk � ≤ CΘ and�v� ≤ C̄, �v − θk � ≤ �v� + �θk � ≤ C̄ + CΘ, which in turn implies by (C�) that

Ḡk(θk , v) ≥ min �Fk(δ�Xk−�) − αk − c��, c�� + αk − Fk(−δ�Xk−�)��v − θk � .

�e last display is lower-bounded, almost surely, by bδ�(C̄ + CΘ) if X is a continuous set and lower-bounded,
almost surely, by c(δ − ���)�(C̄ + CΘ) if X is discrete.�us, for any θk ∈ Θ, �v� ≤ C̄, v ≠ θk , we have established
that

min �b, bδ(C̄ + CΘ)−�� ≤ Ḡk(θk , v) ≤max �B, δ−�� (�.��)

almost surely, for data supported on a continuous set X and

min �c��, c(δ − ���)(C̄ + CΘ)−�� ≤ Ḡk(θk , v) ≤max ��, (� + c��)δ−�� (�.��)

almost surely, for discrete X , with in both cases the functions Ḡk(θk , v) de�ned by (�.��).
Recall that we de�ned Gk(θk , θk) = b+B

� , θk ∈ Θ, so that b ≤ Gk(θk , θk) ≤ B. Using this fact, relations (�.��),
(�.��), (�.��) and Lemma �.�, we obtain for X continuous that,

h =min�b, bδ
C̄ + CΘ

� ≤ Gk(θk , v) ≤max�B + �
κ
,
�
δ
+ �
κ
� = H

and for discrete X , using (�.��), (�.��), (�.��) and Lemma �.�,

h =min� c
�
,
c(δ − ���)
C̄ + CΘ

� ≤ Gk(θk , v) ≤max�� + �
κ
,
� + c��

δ
+ �
κ
� = H

both almost surely, uniformly in θk ∈ Θ, �v� ≤ C̄.�is establishes (�.��) and the lemma is proved.

�eorem �.�
Let conditions (C�), (C�) be satis�ed, let the estimator θ̂k be de�ned by (�.�) with step sizes {γk , k ∈ N} satisfying
(�.�) and let the constants h and H be from Lemma �.�. De�ne δk = θ̂k − θk and ∆θk = θk − θk−�, k ∈ N (de�ne
θ� = �).�en for any p ≥ �, any n, n� ∈ N such that n� ≤ n and γkH ≤ � for all n� ≤ k ≤ n, the following relation
holds

E�δn�p ≤ C� exp�− ph n�
k=n�+�

γk�+C� � n�
k=n�+�

γ�k�p��+C�E� max
n�+�≤k≤n �θk − θn� �p�+C�E� n�

k=n�+�
γk �∆θk ��p (�.��)

for some positive C�,C�,C� and C�, constants which depend only on p, CΘ, C̄ and H.
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Proof: In this proof, we impose the convention that the summation and the product over an empty set of indices
is zero and one respectively. In particular, ∑m

i=m+� bi = � and∏m
i=m+� bi = �. Recall the notations δk = θ̂k − θk ,

∆θk = θk − θk−�, and introduce further

gk(θk , v) = E�Sk(Xk , v)�Xk−��, Mk(Xk , θk , v) = Sk(Xk , v) − gk(θk , v).
By Lemma �.�, gk(θk , θ̂k−�) = −Gk(θk , θ̂k−�)(θ̂k−� − θk) for some functions Gk(θk , v) such that almost surely
� < h ≤ Gk(θk , v) ≤ H, uniformly over θk ∈ Θ and �v� ≤ C̄.�en

gk(θk , θ̂k−�) = −Gk(θk , θ̂k−�)(θ̂k−� − θk) = −Gk(θk , θ̂k−�)δk−� +Gk(θk , θ̂k−�)∆θk
and the algorithm (�.�) can thus be written in the following form:

δk = δk−� + γk�Mk(Xk , θk , θ̂k−�) + gk(θk , θ̂k−�)� − ∆θk= δk−��� − γkGk(θk , θ̂k−�)� + γkMk(Xk , θk , θ̂k−�) − �� − γkGk(θk , θ̂k−�)�∆θk= δk−�qk + rk , k ∈ N. (�.��)

Here and from now on we use the following notations:

qk = � − γkGk(θk , θ̂k−�), rk = γkMk(Xk , θk , θ̂k−�) − qk∆θk , Rk = k�
i=n�+�

ri . (�.��)

Now we bound the random variables qk , n� ≤ k ≤ n de�ned above by (�.��). According to the conditions of
the theorem, � ≤ � − γkH if n� ≤ k ≤ n and, by Lemma �.� and (C�), � < h ≤ Gk(θk , θ̂k−�) ≤ H almost surely,
uniformly over θk ∈ Θ.�en

� ≤ � − γkH ≤ qk = � − γkGk(θk , θ̂k−�) ≤ � − γkh ≤ e−γk h ≤ �, n� ≤ k ≤ n, (�.��)

almost surely. Here we also used the elementary inequality � − x ≤ e−x .

By iterating the relation (�.��) from n up to n�, � ≤ n� ≤ n, and by applying the Abel transformation for series,

δn = δn� n�
k=n�+�

qk + n�
k=n�+�

rk
n�

j=k+�
q j

= δn� n�
k=n�+�

qk + Rnqn + n−��
k=n�+�

Rk(qk+� − �) n�
j=k+�

q j . (�.��)

Moreover, note that

n−��
k=n�+�

(� − qk+�) n�
j=k+�

q j = n−��
k=n�+�

� n�
j=k+�

q j − n�
j=k+�

q j� = � − n�
j=n�+�

q j . (�.��)
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From relations (�.��), (�.��) and (�.��) it follows that

�δn� ≤ �δn� � n�
k=n�+�

(� − γkh) + � max
n�+�≤k≤n �Rk �. (�.��)

By using (�.��) and (�.��), we bound the term maxn�+�≤k≤n �Rk �:
max

n�+�≤k≤n �Rk � ≤ max
n�+�≤k≤n � k�

i=n�+�
γiMi(Xi , θ i , θ̂ i−�)�

+ max
n�+�≤k≤n � k�

i=n�+�
∆θ i � +H n�

i=n�+�
γi �∆θ i �, (�.��)

Condition (C�) and (�.�) ensure that the estimation accuracy δk is always bounded:

�δk � ≤ �θ̂k � + �θk � ≤ C̄ + CΘ , k ∈ N.
Taking into account this fact, the inequalities (�.��), (�.��) and again the elementary inequality � + x ≤ ex , x ∈ R,
we conclude that

�δn� ≤ (C̄ + CΘ) exp�− h n�
k=n�+�

γk� + � max
n�+�≤k≤n � k�

i=n�+�
γiMi(Xi , θ i , θ̂ i−�)�

+ � max
n�+�≤k≤n � k�

i=n�+�
∆θ i � + �H n�

i=n�+�
γi �∆θ i �. (�.��)

Now note that the sequence �γkMk(Xk , θk , θ̂k−�), k ∈ N� is nothing else but a martingale di�erence with
respect to the natural �ltration �Fk , k ∈ N�, i.e., Fk = σ(X�, . . . , Xk) is the σ-algebra generated by the random
variables X�, . . . , Xk . Indeed, by Lemma �.� and (�.�) this sequence is bounded almost surely

�γkMk(Xk , θk , θ̂k−�)� ≤ γk��Sk(Xk , θ̂k−�)� + �gk(θk , θ̂k−��� ≤ (� + �c)Γ, k ∈ N,
and

E�M(Xk+�, θk+�, θ̂k , )�Fk� = gk(θk , θ̂k) − gk(θk , θ̂k) = �, k ∈ N.
�erefore the sequence �∑k

i=n�+� γiMi(Xi , θ i , θ̂ i−�), k ≥ n�+�� is a martingale with respect to the same �ltration.
Since �Mi(Xi , θ i , θ̂ i−�)� ≤ �+�c due to Lemma �.�, we can apply the maximal Burkholder inequality in case p > �
and the Davis inequality for p = � (see, for example, [��]) to this martingale: for any p ≥ � there exists a constant
Bp such that

E� max
n�+�≤k≤n � k�

i=n�+�
γiMi(Xi , θ i , θ̂ i−�)�p� ≤ Bp E� n�

i=n�+�
γ�i M

�
i (Xi , θ i , θ̂ i−�)�p��

= (� + �c)pBp� n�
i=n�+�

γ�i�p��. (�.��)

For p > �, one can take Bp = �(��p����(p − �)����p; cf. [��].
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Now take the pth power (p ≥ �) of both sides of the inequality and apply the Hölder inequality �∑m
i=� ai�p ≤

mp−�∑m
i=� �ai �p for m = �. Next, take the expectations of the both sides of the resulting inequality and use (�.��)

to derive the statement of the theorem:

E�δn�p ≤ C� exp�− ph n�
k=n�+�

γk� + C�� n�
i=n�+�

γ�i �p�� + C�E� max
n�+�≤k≤n � k�

i=n�+�
∆θ i �p� + C�E� n�

i=n�+�
γi �∆θ i ��p .





6
Tracking of Dri�ing Parameters of a Time Series

I� ���� ������� wepresent an online algorithm for tracking amultivariate time-varying parameterof a time
series.�e algorithm is driven by a gain function. Under assumptions on the gain function, we derive uniform
error bounds on the tracking algorithm in terms of the chosen step size for the algorithm and on the variation of
the parameter of interest. We give examples of a number of di�erent variational setups for the parameter where
our result can be applied, and we also outline how appropriate gain functions can be constructed. We treat in
some detail the tracking of time varying parameters of an AR(d) model as a particular application of our method
and present two small numerical studies.
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� .� I�����������

When one analyzes data that arrive sequentially over time, it is important to detect changes in the underlying
model which can then be adjusted accordingly. Estimation or tracking of time-varying parameters in stochastic
systems is therefore of fundamental interest in sequential analysis. Furthermore, it arises in many engineering,
econometric and biomedical applications and has an extensive literature widely scattered in these �elds. Moti-
vated by many applications in signal processing, speech recognition, communication systems, neural physiology,
environmental and economic modeling, we consider in this chapter the problem of recursive (online) estimation
of the multivariate time-varying parameter of a time series.

Consider then an X -valued time series (Xk , k ∈ N�), N� = N ∪ {�}, X ⊆ Rl , such that at time moment t = �
the �rst observation X� ∼ Pθ� and subsequently at each time moment k ∈ N a new datum Xk arrives according
to the model Xk �Xk−� ∼ Pθk(⋅�Xk−�) with transition law depending on some multivariate parameter θk ∈ Θ ⊆ Rd

and where Xk−� = (X�, X�, . . . , Xk−�).�us, the growing statistical model is, at time t = n, P(n) = P(n)(Θn+�) ={∏n
k=� Pθk(xk �xk−�) ∶ (θ�, . . . , θn) ∈ Θn+�, xn ∈ X n+�} with the convention that Pθ�(y��x−�) = Pθ�(y�). �is

time series formulation represents the most general sequential setting, sequences of independent observations
and Markov chains of arbitrary order are typical examples of models that �t into this framework.

�e multivariate parameter θk ∈ Θ ⊆ Rd , k ∈ N, is time-varying and the goal is to estimate (or to track) its
value based on the data Xk (and prior information) available by that time moment. Since the data arrives in a
successive manner, conventional methods based on samples of a �xed size are not easy to use. Amore appropriate
approach is based on sequential methods, stochastic recursive algorithms, which allow fast updating of parameter
or state estimates at each instant as new data arrive and therefore can be used to perform “online” inference, that
is, during the operation of the system. Stochastic recursive algorithms, also known as stochastic approximation,
take many forms and have numerous applications in the biomedical, socio-economic and engineering sciences,
which highlights the interdisciplinary nature of the subject.

�ere is a vast literature on stochastic approximation beginning with the seminal papers [��] and [��].�ere
is a large variety of techniques in the area of stochastic approximation which have been developed and inspired
by the applications from other �elds. We mention here the books [��, ��, ��, ��, ��, ��, ���].

A classical topic in adaptive control concerns the problem of tracking dri�ing parameters of a linear regression
model, or somewhat equivalently, tracking the best linear �t when the parameters change slowly.�is problem
also occurs in communication theory for adaptive equalizers and noise cancellation, etc., where the signal, noise,
and channel properties change with time. Successful stochastic approximation schemes for tracking in the time-
varying case were given in [��, ��, ��, ��] (see further references therein).

In [��] (see also [��, ��]) the authors discuss the important problem of the choice of the step sizes in the
tracking algorithm which we also address in this chapter. In general, the step size of the tracking algorithm is
not necessarily decreasing to zero because of considerations concerning robustness of the actual physical model
in practical online applications and to allow some tracking of the desired parameter as the system changes over
time. In signal processing applications, it is usual to keep the step size bounded away from zero.

Coming back to our model P(n) with time-varying parameter (θk ∈ Θ, k ∈ N�), the problem of tracking a
signal θk is clearly unfeasible, especially in such general formulation, without some conditions on the modelP(n).
In general, some knowledge about the structure of underlying time seres and some control over the variability
of the parameter θk over time are needed. Interestingly, in this seemingly very general time series framework,
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we actually do not require the knowledge of the model P(n). Instead, all we need is to be able to compute a so-
called gain vector at each time moment k ∈ N, which is a certain (vector) function of the previous estimate of the
parameter θk , new observation Xk and historyXk−�.�e essential property of such a gain vector is that it, roughly
speaking, “pushes” in the right direction of the current value of true parameter to track. Although the assumption
about the existence of that gain vector seems to be rather strong, we demonstrate on a number of interesting
examples when such an assumption indeed holds. Basically, in case of observations from a Markov chain, if the
form of transition density is known as a function of the underlying parameter and it satis�es certain regularity
assumptions, then the gain vector can always be constructed, for example, as a score function corresponding
to the conditional maximum likelihood method. Under appropriate regularity conditions (the existence of the
conditional Fisher information and L�-di�erentiability of the conditional log likelihood), such a score function
always has the property of being a gain vector, at least locally.

A gain function, together with a step sequence and new observations from the model, can be used to adjust
the current approximation of the dri�ing parameter, resulting in a tracking algorithm. To ease the veri�cation of
our assumptions on the gain function, we formulate them in two equivalent forms. Under some assumptions on
the gain vectors, we establish a uniform non-asymptotic bound on the L� error of the resulting tracking algorithm,
in terms of the variation of the dri�ing parameter. Under the extra assumption that the gain function is bounded,
we can strengthen this result to a uniform bound on the Lp error (and then an almost sure bound).�ese error
bounds constitute our main result and they also guide us in the choice of the step size for the algorithm. Some
extensions are also presented where we allow for approximation terms and approximate gains.

Based on ourmain result, we specify the appropriate choice for the step sequence in three di�erent variational
setups for the dri�ing parameter. We treat �rst the simple case of a constant parameter. Although we are mainly
concerned with tracking time-varying parameters, our algorithm is still of interest in the constant parameter case
since it should result in an algorithm which is both recursive and robust. We also consider a setup where the
parameter is stabilizing.�is covers both the case where the parameter is converging and where we sample the
signal with increasing frequency.�e third variational setup covers the important case of tracking smooth signals.
�is setup is somewhat di�erent in that we make observations with a certain frequency from an underlying
continuous-time process which is indexed by a parameter changing like a Lipschitz function. Our result can then
either be interpreted as a uniform, non-asymptotic result for each �xed sampling frequency or as an asymptotic
statement in the observation frequency.

Examples are also given fordi�erent possible gain functions.�ese fall into two categories: general, score based
gain functions for tracking multidimensional parameters in regular models and specialized gains for tracking
more speci�c quantities.�e latter include gains to track level sets or maxima of dri�ing functions (extending
the classical Robbins-Monro and Kiefer-Wolfowitz algorithms) and gains to track dri�ing conditional quantiles.
We also propose modi�cations for a given gain function (rescaling, truncation, projection) which can be used to
design gains tailored speci�cally to verify our assumptions.

We illustrate ourmethodby treating some concrete applications of the proposed algorithmbutwe focusmostly
on the problem of tracking dri�ing parameters in autoregressive models. Results on tracking algorithms for these
models already exist in the literature (cf. [�, ��]) and we can derive similar results by choosing an appropriate gain
function. Using our approach, obtaining error bounds on the resulting tracking algorithm reduces to verifying
our assumptions for the chosen gain function which considerably simpli�es the derivation of results.
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�is chapter is structured as follows. In Section �.�we summarize the notation that will be used througout the
remainder of the chapter, as well as our model and two equivalent formulations for our assumptions. Section �.�
contains our main result and respective proof as well as some straightforward extensions of the main result.
�e construction and modi�cation of gain functions for di�erent models and di�erent parameters of interest is
explained in Section �.�. Section �.� contains three examples of variational setups for the time-varying parameter
for which we specify the tracking error implied by our main result. We collect in Section �.� some examples of
applications and in Section �.� some numerical examples. Section �.� contains the proofs for our lemmas.

� .� P������������

First we introduce some notation that we are using throughout the chapter. All vectors are always column vectors
unless explicitly transposed. We use bold uppercase letters to represent sets of vectors. For vectors x , y ∈ Rd ,
denote by �x�� and �x , y� = xT y the usual Euclidean norm and the inner product inRd , respectively, and by �x�p
the lp norm on vectors in Rd . We will represent the indicator of the event A as 1A. For a symmetric d × d matrix
M, let λ(�)(M) and λ(d)(M) be the smallest and the largest eigenvalues of M respectively. Denote N� = N ∪ {�}.
Let also O denote the zero matrix, I the identity matrix and J the exchange matrix whose dimensions will be
determined by the context. We will use the convention that ∑i∈� Ai = O and∏i∈� Bi = I for matrices Ai and
Bi with such dimensions that these matrix operations (summation and product) are well de�ned. When applied
to matrices, the symbol ���⋅���p will represent the operator norm induced by the lp vector norm, which is a matrix
norm de�ned as ���A���p =max

x≠�
�Ax�p�x�p =max

x=� �Ax�p =max
x≤� �Ax�p .

Assume that by time n ∈ N, we have observed Xn = (X�, X�, . . . , Xn) according to the following model:

X� ∼ Pθ� , Xk �Xk−� ∼ Pθk(⋅�Xk−�), k ∈ N. (�.�)

Here the time series (Xk , k ∈ N�) takes value in some set X ⊆ Rl , i.e., P(Xk ∈ X ) = �, k ∈ N�. Let Fk =
σ(Xk) denote the σ-algebra generated by Xk = (X�, X�, . . . , Xk). �e time-varying parameter θk = θk(Xk−�),
k ∈ N�, is allowed to depend on the past of the time series, i.e., it is assumed to be predictable with respect to the
�ltration (Fk)k∈N. Further, θk is assumed to take values in some convex compact subset Θ of Rd , to be precise,
P(θk(Xk−�) ∈ Θ) = � for all k ∈ N�. We are interested in tracking the dri�ing parameter θk(Xk−�) which we will
o�en abbreviate as θk . Denote from now on

CΘ = sup
θ∈Θ �θ��. (�.�)

At time n ∈ N, the underlying (growing) statistical model is P(n) = P(n)(Θn+�), which we can write as

P(n)(Θn+�) = � n�
k=�

Pθk(xk �xk−�) ∶ (θ�, . . . , θn) ∈ Θn+�, xn ∈ X n+��,
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where Pθ�(y��x−�) should be understood as Pθ�(y�). For k = �, . . . , n, each conditional measure belongs to

Pk = Pk(Θ) = �Pθ(⋅�xk−�) ∶ θ ∈ Θ, xk−� ∈ X k�.
At time k, given Xk , the model Pk+� contains all the relevant information about the next observation but we
do not consider it to be (completely) known. Instead, we assume that our prior knowledge about the model is
formalized as follows: for each k ∈ N we have certain Rd-valued functions Gk(x , θ�xk−�) at our disposal (which
we will call gain vectors or gain function), x ∈ X , xk−� ∈ X k ⊂ Rl k , θ ∈ Rd , i.e., Gk ∶ X k+� ×Rd → Rd , and these
gain vectors satisfy conditions (A�) and (A�) below.

(A�) For all k ∈ N and all θ , � ∈ Θ the following statements hold almost surely:

gk(θ , ��Xk−�) = � Gk(x , θ�Xk−�) dP�(x�Xk−�) (�.�)

is well de�ned, there exists a symmetric positive-de�nite matrix Mk = Mk(Xk−�) with (random) eigenval-
ues � < Λ(�)(Mk) ≤ ⋅ ⋅ ⋅ ≤ Λ(d)(Mk) and constants � < λ� ≤ λ� <∞ such that

gk(θ , ��Xk−�) = −Mk(Xk−�)(θ − �), (�.�)

with � < λ� ≤ E[Λ(�)(Mk)�Xk−�] ≤ Λ(d)(Mk) ≤ λ� <∞.

(A�) �ere exists a constant C > � such that for all k ∈ N and all θ , � ∈ Θ,
E�Gk(Xk , θ�Xk−�) − gk(θ , ��Xk−�)��� ≤ C . (�.�)

Note that assumption (A�) is redundant if, for example, the gain vectorsGk(x , θ�Xk−�) are almost surely bounded.
Condition (A�) means, in a way, that, on average, the gain vector Gk(Xk , θ̂k �Xk−�) shi�s θ̂k towards the “true”
value θk = θk(Xk−�):

E�Gk(Xk , θ̂k �Xk−�)�Fk−�� = gk(θ̂k , θk �Xk−�) = −Mk(Xk−�)�θ̂k − θk�,
for some symmetric, almost surely positive-de�nite matrix Mk(Xk−�) such that � < λ� ≤ E[λ(�)(Mk)�Fk−�] ≤
λ(d)(Mk) ≤ λ� <∞.

Condition (A�) can be reformulated as (Ã�), which gives some intuition as to the role of the function gk and
which may, in certain situations, be simpler to verify.

(Ã�) �e quantity gk(θ , ��Xk−�) de�ned by (�.�) satis�es, almost surely, the following conditions: there exist
random variables Λ�(Xk−�) and Λ�(Xk−�) and constants � < λ� ≤ λ� < ∞, � < L < ∞ such that for all
θ , � ∈ Θ,

Λ�(Xk−�)�θ − ���� ≤ −(θ − �)T gk(θ , ��Xk−�) ≤ Λ�(Xk−�)�θ − �����gk(θ , ��Xk−�)�� ≤ L�θ − ��� (�.�)

with � < λ� ≤ E[Λ�(Xk−���Xk−�] ≤ Λ��Xk−�� ≤ λ� <∞.

In view of the lemma below, if (A�) holds, then (Ã�) will also hold (and vice versa); the values of the constants λ�
and λ� appearing in the assumptions are di�erent, though.�e proof of this lemma is deferred to Section �.�.
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Lemma �.� Let x , y ∈ Rd. If there exists a symmetric positive-de�nite matrix M such that y = Mx and � < λ� ≤
λ(�)(M) ≤ λ(d)(M) ≤ λ� < ∞ for some λ�, λ� ∈ R, then � < λ′��x�� ≤ �x , y� ≤ λ′��x�� < ∞ and �y� ≤ C�x� for
some λ′�, λ′�,C ∈ R (depending only on λ�, λ�) such that � < λ′� ≤ λ′� <∞ and C > �.

Conversely, if � < λ′��x�� ≤ �x , y� ≤ λ′��x�� <∞ and �y� ≤ C�x� for some λ′�, λ′�,C ∈ R such that � < λ′� ≤ λ′� <∞ and C > �, then there exists a symmetric positive-de�nite matrix M such that y = Mx and � < λ� ≤ λ(�)(M) ≤
λ(d)(M) ≤ λ� <∞ for some constants λ�, λ� ∈ R depending only on λ′�, λ′� and C.

At each time k ∈ N, the observer should be able to calculate the gain vector at (Xk ,Xk−�) and an estimator θ̂k ,
Gk(Xk , θ̂k �Xk−�), in order use it to update the estimate θ̂k . In Section �.� we will show how gain functions can
be constructed, but before that,in the next section, we present our tracking algorithm based on the gain function
and our main result describing the quality of the algorithm.

� .� M��� ������

Consider the recursive algorithm for tracking the sequence θk = θk(Xk−�) ∈ Θ ⊂ Rd from the observations (�.�):

θ̂k+� = θ̂k + γkGk(Xk , θ̂k �Xk−�), k ∈ N, (�.�)

for some positive sequence of step sizes γk ≤ Γ and some (arbitrary) initial value θ̂� ∈ Θ ⊂ Rd .
Heuristically, since the gain vector Gk(Xk , θ̂k �Xk−�) moves, on average, θ̂k towards θk and the sequence

θk ∈ Θ (since Θ is compact) is bounded, the resulting estimating sequence θ̂k should also be well-behaved.�e
following lemma states that the second moment of θ̂k is uniformly bounded in k ∈ N.
Lemma �.� For su�ciently small γk there exists a constant C̄Θ such that

E�θ̂k��� ≤ C̄�
Θ , k ∈ N.

�e proof of this lemma is given in the Section �.�. In fact, it is enough to assume that γk is su�ciently small
for all k ≥ N for some �xed N ∈ N.�is lemma will be used in the proof of the main theorem below.

�eorem �.� (Error bound)
Let Assumptions (A�) and (A�) hold and p ≥ �. Let the tracking sequence θ̂k be de�ned by (�.�) with the sequence
γk satisfying the conditions of Lemma �.�, δk = δk(Xk−�) = θ̂k − θk and ∆k = ∆k(Xk) = θk − θk+�, k ∈ N. �en
for any k�, k ∈ N such that k� ≤ k and γiλ� < � for all k� ≤ i ≤ k, the following relation holds:

E�δk+��p ≤ C� exp� − λ�
�

k�
i=k�

γi� + C�� k−��
i=k�

γ�i���� + C� max
i=k� ,...,kE�θ i+� − θk���, (�.�)

where C� = (�d)����C̄Θ + CΘ�, C� = d���C����� + λ��λ��, C� = d����� + λ��λ�� and C is from Assumption (A�).
If, in addition, Λ(�)(Mk) ≥ λ� (in Assumption (A�)) and �Gk(Xk , θ̂k �Xk−�)� ≤ C almost surely, then for any
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k�, k ∈ N such that k� ≤ k and γiλ� < � for all k� ≤ i ≤ k,
E�δk+��pp ≤ C� exp� − pλ� k�

i=k�
γi� + C�� k−��

i=k�
γ�i�p�� + C� max

i=k� ,...,kE�θ i+� − θk��pp , (�.�)

where C� = �p−�Kp
pE�δk��pp, C� = d ��p−�BpCp�� + K�

pλ��λ��p and C� = �p−��� + K�
pλ��λ��p.

Proof: For the sake of brevity, denote θk = θk(Xk−�),Gk = G(Xk , θ̂k �Xk−�) and gk = g(θ̂k , θk �Xk−�), k ∈ N. Recall
that Fk = σ(Xk) is the σ-�eld generated by Xk = (X�, X�, . . . , Xk).

We have
E[Gk �Fk−�] = gk(θ̂k , θk �Xk−�) = gk , k ∈ N.

It follows that Dk = Gk − gk , k ∈ N, is a (vector) martingale di�erence sequence with respect to the �ltration{Fk , k ∈ N�}.
Rewrite the algorithm equation (�.�) as

δk+� = δk + ∆θk + γkDk + γk gk , k ∈ N.
In view of Assumption (A�), we have the decomposition gk = −Mkδk , with a symmetric positive-de�nite matrix
Mk = M(θ̂k , θk �Xk−�) so that

δk+� = ∆θk + γkDk + (I − γkMk)δk , k ∈ N. (�.��)

By iterating the above relation, we obtain that for any k� = �, . . . , k
δk+� = (� − γkMk)(I − γk−�Mk−�)δk−� + ∆θk + γkDk+ (� − γkMk)(∆θk−� + γk−�Dk−�)
= � k�

i=k�
(I − γiMi)�δk� + k�

i=k�
� k�
j=i+�(I − γ jMj)�(∆θ i + γiDi). (�.��)

Denote Ai = ∑i
j=k� γ jD j, Bi = ∑i

j=k� ∆θ j andCi = Ai+Bi . Applying the vector version of the Abel transformation
(Lemma �.�) to the second term of the right hand side of (�.��) yields

k�
i=k�
� k�
j=i+�(I − γ jMj)�(∆θ i + γiDi) = Ck − k−��

i=k�
γi+�Mi+�� k�

j=i+�(I − γ jMj)�Ci . (�.��)

Note in particular that, if we take Mj = λ� for j = k�, . . . , k, ∆θ j = �, for j = k�, . . . , k, Dk� = � and Dj = � for
j = k� + �, . . . , k, we derive that (if � ≤ γ jλ� ≤ � for j = k�, . . . , k)

k−��
i=k�

λ�γi+�
k�

j=i+�(� − γ jλ�) = � −
k�

j=k�+�
(� − γ jλ�) ≤ �, (�.��)

which we will use later.
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Using (�.��), we can rewrite our expansion of δk+� in (�.��) as

δk+� = � k�
i=k�
(I − γiMi)�δk� + Ck − k−��

i=k�
γi+�Mi+�� k�

j=i+�(I − γ jMj)�Ci .

Take p ∈ N.�e previous display, the triangle inequality and the sub-multiplicative property of the operator
norm (���MN ���p ≤ ���M���p���N ���p) imply that

�δk+��p ≤ �δk��p k�
i=k�
���I − γiMi ���p + �Ck�p

+ k−��
i=k�

γi+����Mi+����p�Ci�p k�
j=i+�
���I − γ jMj���p . (�.��)

Due to Assumption (A�), the matrix Mi has smallest and largest eigenvalues Λ(�),i and Λ(d),i , respectively,
such that almost surely � ≤ γiΛ(�),i ≤ γiΛ(d),i ≤ γiλ� < �, k� ≤ i ≤ k, and E[Λ(�),i �Fi−�] ≥ λ� > �.�en,

E�(� − γkΛ(�),k)��Fk−�� ≤ E�� − γkΛ(�),k�Fk−�� ≤ � − γkλ�,
almost surely. Similarly, E�� − γkΛ(�),k �Fk−�� ≤ � − γkλ� almost surely. It then follows by Lemma �.� that

E
k�

i=k�
���� − γiMi ����� = E k�

i=k�
(� − γiΛ(�),i)� = E������E�

k�
i=k�
(� − γiΛ(�),i)��Fk−��������

= E������E�(� − γkΛ(�),k)��Fk−�� k−��
i=k�
(I − γiΛ(�),i)�������

≤ (� − γkλ�)E k−��
i=k�
(I − γiΛ(�),i)� ≤ k�

i=k�
(� − γiλ�),

(�.��)

by iterating the recursion.

LetDkl denote the l-th coordinate of the vectorDk . Clearly, for each l = �, . . . , d, {Dkl , k ∈ N} is a martingale
di�erence with respect to the �ltration {Fk , k ∈ N�}. Using the fact that martingale increments are uncorrelated,
we derive that for all i = k�, . . . , k

E�Ai��� = E d�
l=�
� i�
j=k�

γ jD jl�� = d�
l=�

i�
j=k�

γ�jED�
jl = i�

j=k�
γ�jE�Dj��� ≤ C k�

j=k�
γ�j .

Since Bi is a telescopic sum, we also have, for all p ∈ N and i = k�, . . . , k,
E�Bi�p = E� i�

j=k�
∆θ j�

p
= E�θ i+� − θk��p ≤ max

i=k� ,...,kE�θ i+� − θk��p .
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Since �Ci�� is F j-measurable for all j ≥ i, it follows that
E��Ci�� k�

j=i+�
���I − γ jMj����� = EE��Ci�� k�

j=i+�
���I − γ jMj�����Fk−��

= E�E�� − γkΛ(�), j�Fk−���Ci�� k−��
j=i+�(� − γ jΛ(�), j)�

≤ (� − γkλ�)E��Ci�� k−��
j=i+�(� − γ jΛ(�), j)� ≤ E�Ci�� k�

j=i+�(� − γ jλ�).
Combining the last three displays, relations (�.��), (�.��) and (�.��), Lemma �.�, the Hölder and triangle

inequalities and the elementary inequality � − x ≤ e−x , we �nally get that
E�δk+���
≤�E�δk����E k�

i=k�
���I − γiMi ��������� +E�Ck�� +E� k−��

i=k�
γi+����Mi+������Ci�� k�

j=i+�
���I − γ jMj�����

≤�E�δk���� k�
i=k�
(� − γiλ�)���� +E�Ck�� + k−��

i=k�
γi+�λ�E��Ci�� k�

j=i+�
���I − γ jMj������

≤�E�δk�������� exp� − λ�
�

k�
i=k�

γ j� + max
i=k� ,...,kE�Ci���� + k−��

i=k�
γi+�λ�

k�
j=i+�(� − γ jλ�)�

≤√��C̄Θ + CΘ� exp� − λ�
�

k�
i=k�

γi� + �� + λ�
λ�
���C k�

i=k�
γ�i ���� + max

i=k� ,...,kE�θ i+� − θk����,
since E�δk���� ≤ �E�θ̂k���� + �E�θk���� ≤ �(C̄�

Θ + C�
Θ), by (�.�) and Lemma �.�. Note that �δk��� ≥ �δk��p for

p ≥ �, d����δk��� ≥ �δk��p for � ≤ p < �. We have established the �rst statement of the theorem.

Let now the components of the gain function Gk be almost surely bounded, in absolute value, by a certain
constant C. Using Lemma �.� and the elementary inequality � − x ≤ e−x , we have that, for each p ∈ N, and then
some constant Kp, we can derive the following alternative expression to (�.��).

�δk+��p ≤ Kp�δk��p k�
i=k�
(� − γiλ�) + max

i=k� ,...,k �Ci�p�� + K�
p

k−��
i=k�

γi+�λ�
k�

j=i+�(� − γiλ�)�
≤ Kp�δk��p exp� − λ� k�

i=k�
γ j� + �� + K�

p
λ�
λ�
� max

i=k� ,...,k �Ci�p ,
where we again use (�.��). Take now the p-th power (p ≥ �) of both sides of the inequality and apply the Hölder
inequality (∑m

i=� ai)p ≤ mp−�∑m
i=� �ai �p for m = � to get

�δk+��pp ≤ �p−�Kp
p�δk��pp exp� − pλ� k�

i=k�
γ j� + �p−� �� + K�

p
λ�
λ�
�p max

i=k� ,...,k−� �Ci�pp ,
Remember that the sequence �∑i

j=k� γ jD j(X j , θ̂ j , θ j), i ≥ k�� is a martingale with respect to the �ltration{Fi , i ∈ N} and that the entries of Dj verify �Djl � ≤ �C, almost surely. Applying the maximal Burkholder for p > �
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and the Davis inequality for p = � (cf. [��, ��]) we conclude that for any p ≥ �, with Bp = ((��p���)�(p − �)���)p,
E max

i=k� ,...,k−� �Ai�pp = E max
i=k� ,...,k−�

d�
l=�
� i�
j=k�

γ jD jl �p ≤ d�
l=�

E max
i=k� ,...,k−� � i�

j=k�
γ jD jl �p

≤ Bp
d�
l=�

E� k−��
j=k�

γ�j D
�
jl �p�� ≤ dBp�pCp� k−��

j=k�
γ�j �p��,

�e second inequality of the theorem now follows by taking expectations on both sides of the bound on �δk+��pp
above, by using the last inequality, (�.��) and the fact that �Ci�pp ≤ �p−��Ai�pp + �p−��Bi�pp.
Remark �.� Sometimes we will not be interested in tracking the, say, natural parameter θk of the model but some
other parameter �k which is, on average, close to θk. �e di�erence �θk − �k�p can be seen as an approximation
term in that the parameter θk driving the time series is actually an approximation for our parameter of interest �k.
Denoting θ̂k − �k as δ∗k , the following expansion can be derived,

δ∗k+� = δ∗k + ∆�k + γkDk − γkMk(θ̂k − θk)= ∆�k + γkMk(θk − �k) + γkDk + (I − γkMk)δ∗k
= � k�

i=k�
(I − γiMi)�δ∗k� + k�

i=k�
� k�
j=i+�(I − γ jMj)�(∆�k + γkMk(θk − �k) + γiDi).

�e same note could be made for situations where gk = −Mk(θ̂k − θk − ηk) where ηk is a remainder term which
may be random so long as it is measurable with respect to σ(Xk−�); it would then follow that

δk+� = � k�
i=k�
(I − γiMi)�δk� + k�

i=k�
� k�
j=i+�(I − γ jMj)�(∆θ i − ηi + γiDi).

Noting that ���γkMk (θk − �k)���p < λ�γkKp�θk − �k�p we conclude, for the same constants C�,C�,C� as before and
all p ∈ N, that the following also hold

E�δk+��p ≤C� exp� − λ�
�

k�
i=k�

γ j� + C�� k−��
i=k�

γ�i����
+ C�E max

i=k� ,...,k ��i+� − �k��� + λ�K�E
k�

i=k�
γi�ηi��, (�.��)

E�δk+��pp ≤C� exp� − pλ� k�
i=k�

γ j� + C�� k−��
i=k�

γ�i�p��
+ C�E� max

i=k� ,...,k ��i+� − �k��p + λ�Kp
k�

i=k�
γi�ηi�p�p , (�.��)

where either a) δk = θ̂k − �k and ηk = θk − �k, b) δk = θ̂k − θk, �k = θk and ηk such that gk = −Mk(δk − ηk);
(�.��) and (�.��) generalize then the bounds in (�.�) and (�.�) where we had c) δk = θ̂k − θk, �k = θk and ηk = �.
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Remark �.� If we are interested in tracking �k = φ(θk), functional of the parameter θk with uniformly bounded
derivatives, then by using Taylor’s �eorem, our �eorem �.� above straightforwardly delivers a bound on the ex-
pectation of ��̂k − �k�p = �φ(θ̂k) − φ(θk)�p and its powers.
� .� C����������� �� ���� ���������

In this section we address the construction, or choice, of appropriate gain functions to be used with the algorithm
(�.�). Any gain function for which conditions (A�) and (A�) hold may be used in our algorithm, and whether
a particular gain function is suitable or not depends exclusively on the model under study. Namely, this will
depend on the way in which the distributions in the model depend on the parameter which we are interested in
tracking. For certain types ofmodels, theremight be natural choices for the gain function. As before we abbreviate
θk = θk(Xk−�).

A situation, which essentially extends the original setup in which [��] developed their classical algorithm, is
when the data, Xk = (X�, . . . , Xk), is such that

Xk = �k(Xk−�) + ξk(Xk−�),
where the �k(⋅) are functions ofXk−�, and ξk(Xk−�) are martingale di�erence noise terms whichmay also depend
on Xk−�. In this case, given Xk−� we may simply take

Gk(x , θ�Xk−�) = x − θ (�.��)

since for each θ,

gk(θ , �k(Xk−�)�Xk−�) = E�[Gk(Xk , θ�Xk−�)�Xk−�] = −(θ − �k(Xk−�)).
Non-parametric regression is an example of a model which �ts into this situation and for which our results may
be used.

It could also be that Eθ[Xk �Xk−�], the conditional expectation of the data, given the past, is not θ but instead
�(θ) for some some smooth function �. In this case, given Xk−�, one should consider instead,

Gk(x , θ�Xk−�) = x − �(θ) (�.��)

and then, for each θ,

gk(θ , �k �Xk−�) = E�[Gk(Xk , θ�Xk−�)�Xk−�] = −��(θ) − �(�k)�.
�e term on the far right should then be comparable to −(θ − �k). Autoregressive models, for example, fall into
this category (cf. Section �.�.�).

One may also consider more dynamical situations where the observations themselves depend on our tracking
sequence. An example of such a setup is the [��] algorithm where we would like to track the sequence of (unique)
maxima of a sequence of functions �k ∶ Θ ⊂ Rd � R, k ∈ N, which we may observe at any point, corrupted with
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white noise. One possibility (cf. [��]) is to use gain functions de�ned using random directions. Let then Dk , k ∈ N,
denote a random sequence of independent unit vectors. We would consider, for a positive sequence ek , k ∈ N,
the gain function

Gk(X−k , X+k , θ̂k �X−k−�,X+k−�,Dk−�) = Dk
X−k (θ̂k) − X+k (θ̂k)

�ek
, (�.��)

where, with some abuse of notation, the observations X±k+�(θk), are given by

X±k+�(θ̂k) = �k�θ̂k ± ekDk� + ξ±k ,
for θ̂k the tracking sequence de�ned by the gain (�.��) and ξ±k independent, zero mean noise. Let for each k ∈ N,
θk be the unique maximum of �k(⋅). In this case we would have, for the �ltration Fk = σ�X±k ,Dk�,

gk(θ̂k , θk �Fk−�) = E� − DkDT
k∇�k(θ̂k) +Hk(θ̂k) + Dk

ξ−k − ξ+k
�ek

�Fk−��
= −E�DkDT

k �∇�k(θ̂k) +E�Hk(θ̂k)�Fk−�� + E�Dk(ξ−k − ξ+k )�
�ek= −E�DkDT

k �∇��k(θ∗k)(θ̂k − θk) + ηk ,
where ∇��k(⋅) is the Hessian of �k(⋅), θ∗k ∈ Θ and, for θ ∈ Θ,

Hk(θ) = DkDT
k∇�k(θ) − Dk

�k(θ + ekDk) − �k(θ − ekDk)
�ek

.

Conditions (A�) and (A�) will hold if, for example, we assume that the random directions where chosen such
that E�DkDT

k � are positive-de�nite matrices, that the Hessian ∇��k(⋅) is positive-de�nite over Θ and that for
appropriately small ek the expectation E[�ηk�p] is appropriately small, uniformly over θ ∈ Θ.�ese conditions
are comparable to the ones in the original formulation of the Kiefer-Wolfowitz algorithm, and can be signi�cantly
relaxed by, for example, considering di�erent types of expansions for gk depending on how large the norm of
δk = θ̂k − θk is.

Consider now a di�erent example. Say X ⊂ R and, given the past of the process, Xk−�, we would like to track
a conditional quantile of a certain distribution, i.e., we would like to track �k = �k(Xk−�) such that �k = inf �x ∈X ∶ Fk(x�Xk−�) ≥ αk�, where αk is a sequence in (�, �)N of our choice and Fk(⋅�Xk−�) the cumulative distribution
function of Xk �Xk−�. In this case it makes sense to use

Gk(x , θ�Xk−�) = αk − I{x − θ ≤ �} (�.��)

since we see that

gk(θ , �k �Xk−�) = E[Gk(Xk , θ�Xk−�)�Xk−�] = −�Fk(θ − �k �Xk−�) − αk�,
where we assume without loss of generality that the distribution is centered around the quantile �k .�e quantity
in the last display clearly has the same sign as �k − θ. Note also that the algorithm based on this gain function
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only requires knowledge of the values of the indicators 1{Xk − θ ≤ �} which means that we may still track the
required quantiles without explicitly observing Xk .�is problem is treated in detail for the case of independent
observations in [�] and for the more general case where the observations are not independent in Chapter �.

For certain models it might, however, not be obvious how gain functions can be constructed, especially when
tracking multi-dimensional parameters. It is therefore important to have a general procedure that can be used to
construct candidate gain functions that can either be used directly or, if needed, modi�ed to verify (A�) and (A�).

Assume that for each k ∈ N, eachdistribution from the family of conditional distributionsPk = {Pθ(x�Xk−�), θ ∈
Θ} has a density with respect to some σ-�nite dominating measure µ and denote this conditional density by
pθ(x�Xk−�), θ = (θ�, . . . , θd) ∈ Θ. Assume also that there is a common support X for these densities, and that
for any x ∈ X and θ ∈ Θ ⊂ Rd , the partial derivatives ∂pθ(x�Xk−�)�∂θ i , i = �, . . . , d, exist and are �nite, almost
surely. Under these assumptions, the conditional gradient vector

∇θ log pθ(x�Xk−�) = �∂ log pθ(x�Xk−�)�∂θ�, . . . , ∂ log pθ(x�Xk−�)�∂θd� (�.��)

and the square, random matrices Ik(θ�Xk−�) with entries

Ik,i , j(θ�Xk−�) = Eθ � ∂
∂θ i

pθ(x�Xk−�) ⋅ ∂
∂θ j

pθ(x�Xk−�)� (�.��)

for i , j = �, . . . , d, can be de�ned, almost surely. A possible gain function is simply the conditional score of the
model, i.e. the gradient vector

Gk(x , θ�Xk−�) = ∇θ log pθ(x�Xk−�). (�.��)

If (�.��) is almost surely non-singular then one might also consider

Gk(x , θ�Xk−�) = I−�k (θ�Xk−�)∇θ log pθ(x�Xk−�). (�.��)

We justify now why these choices are reasonable. Take � = (��, . . . , �d) ∈ Θ. It is not uncommon for the
Kullback-Leibler divergence K�P�(x�Xk−�), Pθ(x�Xk−�)� to be a quadratic form in the distance between the
parameters θ and �, i.e., equal to a multiple of (θ − �)TM(θ − �) for some (eventually random) positive semi-
de�nite matrix M. If so, under the assumption that we can interchange integration and di�erentiation and that
M does not depend on θ, gk(θ , ��Xk−�) will almost surely reduce to

� ∇θ log pθ(x�Xk−�)dP�(x�Xk−�) = ∇θ � log pθ(x�Xk−�)dP�(x�Xk−�)
=∇θ�� log

pθ(x�Xk−�)
p�(x�Xk−�)dP�(x�Xk−�) +� log p�(x�Xk−�)dP�(x�yk−�)�

=∇θ � log
pθ(x�Xk−�)
p�(x�Xk−�)dP�(x�Xk−�) = −∇θK�P�(x�Xk−�), Pθ(x�Xk−�)�

= −∇θ(θ − �)TM(θ − �) = −�M(θ − �).
�e score will in principle depend on the past of the chain Xk−� and the previous argument might only be
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valid for a certain subset of valuesXk−� inX k−�.�is dependence could prevent (A�) from holding. In these cases,
using the form (�.��) might be a good alternative since the matrix I−�k (θ�Xk−�) will act as an appropriate scaling
factor.

�e dependence of the gain function on the past of the time series is in fact one of the main issues one has to
deal with when checking (A�) and (A�). On one hand, to ensure that the gain function has, on average, the right
direction, as required by (�.�), the gain will o�en need to depend on previous observations.�is might, however,
a�ect either the range or the variance of the gain. Gain function, such as (�.��) and (�.��), can be modi�ed, or
rescaled, to ensure that the respective conditional expectation gk(θ , ��Xk−�) veri�es the assumptions of�eorem
�.�. One can for example truncate certain entries or factors in both Gk(x , θ�Xk−�) and Ik(θ�Xk−�) to ensure that
the resulting gk(θ , ��Xk−�) follows the required assumptions. Another possibility is to rescale, or directly truncate,
the length of a given gain vector and consider, for example, one of the following gains

G̃k(x , θ�Xk−�) = Gk(x , θ�Xk−�)
� + �Gk(x , θ�Xk−�)�� ,

G̊k(x , θ�Xk−�) = Gk(x , θ�Xk−�)�� + κ − �Gk(x , θ�Xk−�)���Gk(x , θ�Xk−�)�� 1{�Gk(x , θ�Xk−�)�� ≥ κ}�,
Ḡk(x , θ�Xk−�) = Gk(x , θ�Xk−�)min �s(Xk−�), κ�

s(Xk−�) ,

for Gk an arbitrary gain function, κ > � and some function s ∶ X k � R+. Note that G̃k , G̊k and Ḡk all preserve
the direction of Gk and have norm bounded by respectively �, κ, and the norm of Gk , almost surely.

�e gain Ḡk is speci�cally rescaled for situations where we have a conditional gain gk almost surely of the form
gk = −s(Xk−�)Mk(θ − �), where Mk has eigenvalues as prescribed by (A�). Consequently we will have that ḡk =−min �s(Xk−�), κ�Mk(θ− �) from where it follows that the largest eigenvalue of the matrix min �s(Xk−�), κ�Mk

will then be almost surely upper-bounded; in certain situations it will be possible to use the fact that almost
surely E[Λ(�)(Mk)�Xk−�] ≥ λ�, to show that E[min �s(Xk−�), κ�Λ(�)(Mk)�Xk−�] ≥ cλ� for some � < c ≤ � and
su�ciently large κ. Using the fact that the function min(x , κ)�x ≤ � we have, again abbreviating Ḡk(Xk , θ�Xk−�)
and ḡk(θ , ��Xk−�)

EE���Ḡk − ḡk����Xk−�� =
E��min �s(Xk−�), κ�

s(Xk−�) ��E���Gk − gk����Xk−��� ≤ E�Gk − gk���, (�.��)

such that if Gk veri�es (A�) then so will Ḡk .

Another possible modi�cation one might consider, is to truncate the iterates of the our algorithm (�.�).�is
might be motivated by practical considerations in the case where the parameter being tracked has some sort of
physical meaning and is therefore bounded; it stands to reason then that the algorithm itself should be restricted
as well. We would then, for a parameter set Θ, consider the sequence

θ̂k+� = ΠΘ̄�θ̂k + γkGk(Xk , θ̂k �Xk−�)�, k ∈ N, (�.��)
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where ΠΘ̄(⋅) acts as a projection on a convex set Θ̄ ⊃ Θ in that ΠΘ̄(⋅) is an identity on Θ̄ and maps points in Θ̄c

to Θ̄.
We will provide concrete examples of gain functions later in Section �.�. Before this, we present in Section �.�

some examples of di�erent types of variation that the parameter of the model may have such that our algorithm
is capable of adequately tracking it.

� .� V���������� ������ ��� ��� �������� ���������

It is clear – and in fact explicit in (�.�) and (�.�) – that the changes in the parameter have a non-negligible
contribution to the accuracy of our tracking algorithm.�is is reasonable since, if the parameter changes arbitrarily
in-between observations, we should not expect it to the “trackable”. We must then specify how the parameter is
allowed to vary and, based on that assumption, pick an appropriate sequence γk which minimizes the general
bounds in (�.�) or (�.�). We will specify in this section what these bounds reduce to for concrete examples for the
variation of the parameter being tracked.�ese examples refer only to how the parameter is assumed to change
and are unrelated to the actual model in question; examples of speci�c models can be found in Section �.�.

� .� .� S����� ���������

We assume in this section that θ j(X j−�) = θ�, almost surely, ∀ j ∈ N for some unknown θ� ∈ Θ such that in fact
∆θ j = �, almost surely, and we are actually in a parametric setup. Note that, in this case, the second terms in both
(�.�) and (�.�) obviously vanish.

Take then γ j = Cγ j−� log j and for q ∈ (�, �), n� = [qn], where [a] is the whole part of a ∈ R. Let n ≥ ��q = Nq

such that n� ≥ �. For large enough Cγ and all n ≥ Nq we have,

n�
j=n�

γ j ≥ cγ log n� n�
j=n�

�
k
≥ log n

�λ�
,

from where for all p ∈ N,
exp� − pλ� n�

j=n�
γ j� ≤ n−p��.

Note that in the case where we have E�δn��pp ≤ C�n
p
� we can take the constant Cγ to be larger (say take rCγ, r > �)

in which case
C� exp� − pλ� n�

j=n�
γ j� ≤ c�npn−rp�� ≤ C�n−p��.

Using now the fact that∑n
j=n� γ�j ≤ c(log n)�n−� for some constant c > � we have

�� n�
j=n�

γ�j
��
p�� ≤ (n−��� log n)p .

We conclude that we can rewrite (�.�) and (�.�) respectively as

max
n≥Nq

E
√
n

log n
�δn�p ≤ C and max

n≥Nq
E� √n

log n
�δn�p�p ≤ C ,
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for all p ∈ N.�e log term in the rate cannot be avoided and is a consequence of the recursiveness of the algorithm.

Note that by taking p > ε−� and, by using Markov’s inequality and the second bound in the previous display,
we conclude that

∞�
n=� P�n���−ε�θ̂n − θ��� > c� ≤

∞�
n=� P�d p−�

p n���−ε�θ̂n − θ��p > c�
≤ ∞�

n=�
dp−�np��−pεE�δn�pp

cp
≤ C ∞�

n=�
(d log n)p

npε <∞.
(�.��)

By application of the Borel-Cantelli Lemma,we conclude that �θ̂n−θ��� → � as n → � takes place with probability
� at a rate n���−ε for all ε > �.

�e particular setup presented in this section, where the parameter is �xed, might seem out of place since
we are mainly concerned with tracking time-changing parameters. We would like to point out, however, that
our algorithm is recursive and, as such, always produces estimates in a fast, straightforward fashion.�is is an
advantage especially over “o�ine” estimators obtained, say, as solutions to a certain system,which require iterative
likelihood or least squares optimization or are obtained via other indirect methods, a situation which is common
when dealing with Markov models (cf. Section �.�.�.)

� .� .� S���������� ���������

Suppose now that the parameter we want to track is stabilizing.�is situation might arise if the expectation of
the sequence of values that the parameter takes is converging to some limiting value. It could also be the case
that the data is being sampled, with increasing frequency, from an underlying, continuous-time process which
depends on a parameter varying continuously; in this case, the parameter varies less and less since it is allowed
less time to change. Regardless, we assume that ∆θ i = θ i(Xi−�) − θ i+�(Xi) veri�es

E�∆θ i�pp ≤ ρpi , i ∈ N
for p ≥ � and some decreasing sequence ρi . Assume then that we have ρi = cρ i−β for some constant cρ > � and
β ≥ �.

Consider �rst the case β ≥ ���. In this case, the variation of the parameter vanishes so quickly that we are
essentially in the setup of the previous section. Indeed, take γi and n� as in the previous section. �e �rst and
third term in both (�.�) and (�.�) can be bounded in the same way as in the previous section. As for the second
term, by the Hölder inequality,

E� n�
i=n�
�∆θ i�p�p ≤ (n − n�)p−� n�

i=n�
E�∆θ i�pp ≤ C(n − n�)pρpn�

≤ c�(n − n�)n−β� �p ≤ Cn−(β−�)p ≤ Cn−p��, (�.��)

leading to the same bounds as in the previous section

Consider now the case where � < β < ���. Let γi = Cγ(log i)��� i−�β��, n� = n − n�β��(log n)���. By using the
elementary inequality (� + x)α ≤ � + αx for � < α < � and x ≥ −�, we obtain that for su�ciently large n (i.e.,
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n ≥ N� = N�(β)) and su�ciently large constant Cγ

n�
i=n�

γi ≥ Cγ(log n�)��� n�
i=n�

�
i�β�� ≥ Cγ(log n�)���� n

n�

dx
x�β��

= Cγ(log n�)���
� − �β�� �n�−�β�� − n�−�β���� − n�β��−�(log n)�����−�β���

≥ Cγ(log n�)���
� − �β�� �n�−�β�� − n�−�β���� − n�β��−�(log n)���(� − �β��)��

= Cγ(log n�)���(log n)��� ≥ log n
�h

.

�is yields the same bound for the �rst terms in (�.�) and (�.�): for n ≥ N�, su�ciently large constant Cγ and all
p ∈ N,

C� exp� − ph n�
i=n�

γi� ≤ C�n−p��.

Let us now bound the last terms in (�.�) and (�.�): for n ≥ N� = N�(β) and all p ∈ N,
� n�
i=n�

γ�i �p�� ≤ C�(log n)���n−�β��� (n − n�)�p�� ≤ c�(log n)���n−β���p .
For su�ciently large n (i.e., n ≥ N� = N�(β)) the second terms in (�.�) and (�.�) are bounded similarly to (�.��)
by

E� n�
i=n�
�∆θ i�p�p ≤ c�(n − n�)n−β� �p ≤ C�(log n)���n−β���p .

Finallywe obtain that for� < β < ��� anda su�ciently large constantCγ in the algorithm step γi = Cγ(log i)��� i−�β��,
(�.�) and (�.�) can be rewritten respectively as

max
n≥Nβ

E nβ��(log n)��� �δn�� and max
n≥Nβ

E� nβ��(log n)��� �δn�p�p ≤ c,
where Nβ =max(N�,N�,N�) is the burn-in period of the algorithm.

Remark �.� If we choose γi = Cγ(log i)α� i−α and n� = n − nα(log n)α� , � < α < �, α�, α� ≥ �, α� + α� ≥ � in case
� < β < ���, then we get the following bound of the convergence rate: for su�ciently large n and su�ciently large
constant Cγ

E�δn�pp ≤ C�n−min{β−α,α��}(log n)max{α� ,α�+α���}�p .
�us , the choice α = �β��, α� = ���, α� = ��� is optimal in the sense of the minimum of the right-hand side of the
above inequality.

Remark �.�Much in the same way as for (�.��), we can establish that for any ε > �, limn→∞ nβ��−ε�δn�� = �
with probability �.
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Finally, consider the case β = �, i.e., we assume the following weak requirement: E�∆θ i�pp ≤ c, i ∈ N, for some
uniform constant c. Take n − n� = N , γi = γ for some N ∈ N, γ > �.�en�eorem �.� implies that

max
n≥N E�δn�pp ≤ C�e−phNγ + C�Np��γp + C�Npc = D.

We thus have that the algorithm will track down the parameter in the proximity of size D, which we can try to
minimize by choosing appropriate constants N and γ.

� .� .� L �������� ������ ���� ����������� �� ��� �������� ���������

We consider now a slightly di�erent setup where we assume that the parameter is changing, on average, like
a Lipschitz function. In this setup we let the time series (�.�) be sampled from a continuous-time process Xt ,
t ∈ [�, �] which we observe with frequency n.�is means that for each n ∈ N we have a di�erent model, namely,

Xn
� ∼ Pθn� , Xn

k �Xn
k−� ∼ Pθnk (⋅�Xn

k−�), k ≤ n ∈ N, (�.��)

where the parameter θnk = θnk(Xn
k−�) veri�es, for some p ∈ N and κd ,p <∞
E�θnk(Xn

k−�) − θnk�(Xn
k)�pp ≤ κpd ,p�k − k�n

�βp .
We could have for example that θnk(Xn

k−�) = �(k�n), almost surely, where �(⋅) ∈ Lβ(M , [�, �]) = {g(⋅) ∶ �g(t�)−
g(t�)�� ≤ M�t� − t��β , t�, t� ∈ [�, �]} for some � < β ≤ � and M > �, a space of vector-valued Lipschitz functions.

Let γk ≡ Cγ(log n)(�β−�)�(�β+�)n−�β�(�β+�) , (i.e. γk is constant in k) for k = �, . . . , n, and
k� = k�(n) = k − (log n)��(�β+�)n�β�(�β+�),

for k ≥ Kn = (log n)��(�β+�)n�β�(�β+�). Note that for Kn�n → � as n →∞ for any � < β ≤ �.
For su�ciently large Cγ

k�
i=k�

γi = Cγ(log n)(�β−�)�(�β+�)n�β�(�β+�)(k − k�) ≥ Cγ log n ≥ log n
�λ�

,

leading to

exp� − pλ� k�
i=k�

γi� ≤ cn−p��.
In much the same way,

� k�
i=k�

γ�i�p�� ≤ C�(log n) �β−��β+� n− �β
�β+� (k − k�)����p = C�(log n) �β

�β+� n− β
�β+��p .

From our assumption on the variation of the parameter, we have

max
i=k� ,...,kE�θni+� − θnk��pp ≤ c�k − k�n

�−pβ ≤ C�(log n) �β
�β+� n− β

�β+��p .
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Combining the three bounds, we get that (�.�) and (�.�) imply

sup
�∈L(L,β)max

i≥Kn
E�δi�� ≤ C(log n) �β

�β+� n− β
�β+� , (�.��)

sup
�∈L(L,β)max

i≥Kn
E�δi�pp ≤ C�(log n) �β

�β+� n− β
�β+��p . (�.��)

� .� S��� ������������ �� ��� ���� ������

In this section we present some examples of particular models to which our algorithm may be applied. We start
with two toy examples and present therea�er some more involved examples.�e toy examples illustrate the type
of results that can be obtained from our main result and its extensions, how a gain function can be picked and
modi�ed, and how conditions (A�) and (A�) can be checked.

� .� .� T������� ��� ��������� �������� �� � P������ �������

Let us say that we are monitoring n independent Poisson processes on [�, �] with unknown intensity function
λ(⋅), for �xed n ∈ N. �is is equivalent to observing N(t) = N(t, n), a Poisson process with intensity nλ(t),
� ≤ t ≤ �. We would like to track the intensity function λ(⋅) which we will assume is uniformly upper-bounded
by L.

Let us say that we observe the process with frequency n, in that our observations are Xn
k = N(k�n), such that

for each n ∈ N we have the model

Xn
� = �, Xn

k+��Xn
k ∼ Pθnk (⋅�Xn

k ) = Pθnk (⋅ − Xn
k ), k = �, . . . , n,

where Pθ(⋅) represents a Poisson lawwith parameter θ ∈ R+. We will work then with pθ(⋅�y) a conditional, shi�ed
Poisson mass function given by

pθ(x�y) = exp(−θ) θx−y(x − y)! ,
for x ∈ N, x ≥ y.�e moving parameter θnk is given, for k = �, . . . , n, by

θnk = � k
n

k−�
n

nλ(t) dt.
Consider now the gain function Gk of the type (�.��) and its conditional expectation gk , respectively given

by
Gk(x , θ�Xn

k−�) = x − Xn
k−� − θ ,

gk(θ , ��Xn
k−�) = E�[Xn

k − Xn
k−� − θ�Xn

k−�] = −(θ − �). (�.��)

with E�[ ⋅ �Xn
k−�] the expectation with respect to p�(⋅�Xn

k−�). It is also simple to see that

E�G(Xn
k , θ�Xn

k−�) − g(θ , ��Xn
k−�)�� = EE�[�Xn

k − Xn
k−� − ����Xn

k−�] = � ≤ L.
We conclude then that the gain function displayed in (�.��) satis�es both (A�) and (A�).
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�is gain function can now be used for the three setups outlined in Section �.� and attains the rates indicated
there. For a constant intensity function λ(⋅) ≡ �, � < � ≤ L, the parameter of the model θnk reduces to the constant
� andwe simply track the rate of the process. Note that this happens sincewe havematched the sampling frequency
��n with the sample size n. If we were to have sampled the process with frequency ��n, say, then θnk = �� in which
case the algorithm would track �� and not �.�e tracking sequence would then have to be rescaled by a factor
��� to obtain a tracking sequence for � itself.

In the setup where we assume that the parameter is stabilizing, take n = � and call �k = θ�n = ∫ k
k−� λ(t) dt the

mean number of events per time unit. Note that

�∆�k � = �� k

k−� λ(t) dt −� k+�
k

λ(t) dt� = �θ�k − θ�k+��.
We then assume that the average number of events is stabilizing in such a way that the previous display is upper
bounded, for β ≥ � and cβ > �, by cβk−β.�e algorithm will then track the mean number of events per time unit.

We can also assume that the intensity function λ(⋅) belongs to Lβ�M , [�, �]� = {g(⋅) ∶ �g(t�) − g(t�)� ≤
M�t� − t��β , t�, t� ≥ �} for some � < β ≤ � and M > �. Call �nk = λ(k�n), k, n ∈ N. It follows that

�∆�nk � = �λ�k�n� − λ�(k + �)�n�� ≤ M n−β ,
�θnk − �nk � = �� k�n

(k−�)�n nλ(t) dt − λ(k�n)� ≤ n� k�n
(k−�)�n �λ(t) − λ(k�n)� dt ≤ M n−β .

�e tracking sequence based on the gain (�.��) will then track the sequence �nk = λ(k�n), k, n ∈ N (as well as θnk )
with the asymptotics seen in Section �.� (cf. Remark �.�.)

� .� .� T������� ��� ���� �������� �� � ������������� G������� �������

Assume that we observe, with �xed frequency n ∈ N, a process Xt , t ∈ [�, �], taking values on X ⊂ Rd , d ∈
N. In this way, for k = �, . . . , n, the observations available to us at time k�n will be a random vector X(n)k =�X�, X��n , . . . , Xk�n�.�e increments Xk�n − X(k−�)�n will be assumed to be conditionally Gaussian in the sense
that given the past of the process, each increment has a multivariate normal distribution, and so,

Xn
� ∼ N�θn� , Σn

��, X(k+�)�n�Xn
k ∼ N�θnk�Xn

k−��, Σn
k�Xn

k−���, k = �, . . . , n.
�e dependence on the past in the model comes from the fact that both the mean and the covariance of the
process are allowed to depend on the past of the process. Here, for each n ∈ N, θnk is an arbitrary sequence in k
depending on Xn

k−�, and Σn
k a sequences in k ∈ N of (positive-de�nite) covariance matrices or order d which, as

already mentioned, may also depend on Xn
k−�.

In the case where the covariance structure of the process is known, we can use the gain (�.��) for which it is
straightforward to check that it veri�es, given Xn

k−�, for x, θ , � ∈ Rd , k = �, . . . , n,
Gk�x, θ�Xn

k−�� = �Σn
k(Xn

k−�)�−��x − θ�,
gk�θ , �(Xn

k−�)�Xn
k−�� = −�Σn

k(Xn
k−�)�−��θ − �(Xn

k−�)�. (�.��)

If this gain function is used, then we assume that, almost surely, for k = �, . . . , n, the eigenvalues of the covariance
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matrices Σn
k(Xn

k−�) are � < Λn(�),k(Xn
k−�) ≤ ⋅ ⋅ ⋅ < Λn(d),k(Xn

k−�) <∞, so that for constants λn� , λn� ,

� < λn� ≤ Λn(�),k(Xn
k−�) ≤ Λn(d),k(Xn

k−�) ≤ λn� <∞,

almost surely. We then have for all θ , � ∈ Rd ,

E�G(Xn
k , θ�Xn

k−�) − g(θ , �(Xn
k−�)�Xn

k−�)��� == E�(Σn
k(Xn

k−�))−��Xn
k − �(Xn

k−�)��T(Σn
k(Xn

k−�))−��Xn
k − �(Xn

k−�)�≤ (λn� )−�EE���Xn
k − �(Xn

k−�)����Xn
k� = (λn� )−�E tr �Σn

k(Xn
k−�)� ≤ d λn� (λn� )−�.

Assumptions (A�) and (A�) are then met for the gain in (�.��).

Let us now assume that the covariance matrix of the process is unknown, di�cult to invert or that assumption
on the eigenvalues of the covariance matrix does not hold. In this case we can use the gain (�.��) which gives us,
for x, θ , � ∈ Rd , k = �, . . . , n,

G(x, θ�Xn
k−�) = x − θ ,

g(θ , �(Xn
k−�)�Xn

k−�) = −�θ − �(Xn
k−�)�. (�.��)

If we now assume that, almost surely, for k = �, . . . , n, the largest eigenvalue of the covariance matrices Σn
k(Xn

k−�)
is upper bounded by some constant λn� <∞, then, for all θ , � ∈ Rd ,

E��G(Xn
k , θ�Xn

k−�) − g(θ , �(Xn
k−�)�Xn

k−�)��� == EE���Xn
k − �(Xn

k−�)����Xn
k−�� = E tr �Σn

k(Xn
k−�)� ≤ d λn� ,

and so assumptions (A�) and (A�) are met for the gain in (�.��).

�e results of Section �.� can be applied to the algorithm based on the gain functions presented above. If, for
each n ∈ N, the mean of the process is constant, θnk(Xn

k−�) ≡ �n then the algorithm will track the (�xed) mean
of the process. Alternatively, we may assume that the parameter is not constant but is stabilizing. We take then
n = �, and assume that the changes in the mean vector of the process are such that, for k ∈ N,

E�∆θnk��� = E�θnk(Xn
k−�) − θnk+�(Xn

k)��� ≤ cβk−β ,
for some β ≥ �, and a constant cβ > �. �e other possibility is to assume that for n ∈ N, the mean of the
process is obtained from a function θ(⋅,Xn

k−�) which is, on average, Lipschitz in the sense that it belongs toLβ�M , [�, �],Xn
k−�� = {g ∶ E�g(t�,Xn

k−�) − g(t�,Xn
k−�)�� ≤ M�t� − t��β , t�, t� ≥ �} for some � < β ≤ � and M > �.

Call �nk = θ(k�n,Xn
k−�), k, n ∈ N. It follows that

E�∆�nk �� = E�θ�k�n,Xn
k−�� − θ�(k + �)�n,Xn

k��� ≤ Mn−β .

In this case the algorithm tracks the mean function θ(k�n,Xn
k−�) at times k�n, with k ∈ N.
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� .� .� T������� �� ARCH(�) ���������

Consider the following ARCH(�) model with dri�ing parameter

Xk = �� + θkX�
k−�����ξk , X� = � (a.s.), (�.��)

where ξk , k ∈ N, form a martingale di�erence sequence with variance σ� = �.�e dri�ing parameter θk belongs
to some interval [�, ρ] for some ρ such that ρ�Eξ�k ≤ � for all k ∈ N.

Consider the gain function

G(Xk , θ�Xk−�) = min(X�
k−�, cσ�)

X�
k−�

(X�
k − � − θX�

k−�) (�.��)

such that, since E�Xk = � and E�[X�
k �Xk−�] = σ�(� + �X�

k−�) = � + �X�
k−�,

g(θ , ��Xk−�) = E��min(X�
k−�, cσ�)

X�
k−�

(X�
k − � − θX�

k−�)�Xk−�� = −min(X�
k−�, cσ�)(θ − �),

for some constant c > �. We then have that Λ(�) ≤ cσ�, almost surely. Note that

E�min(X�
k−�, cσ�)�Xk−�� = E�min �(� + θk−�X�

k−�)ξ�k−�, cσ���Xk−�� ≥ E�min �ξ�k−�, cσ���.
By using the fact that min(a, b) = (a+ b)��− �a− b� and the Hölder inequality, it is straightforward to check that

�E�min �ξ�k−�, cσ��� = (c + �)σ� −E�ξ�k−� − cσ�� ≥ (c + �)σ� − �E�(ξ�k−� − cσ�������� ≥ σ�,
as long as for every k ∈ N, �c σ� ≥ Eξ�k . We conclude that (A�) holds for the gain (�.��).

To check (A�) note �rst that
E[X�

k �X�
k−�] = σ�(� + θkX�

k−�)
and then

EX�
k ≤ σ�(� + ρEX�

k−�).
Since ρ�Eξ�k ≤ �, it follows that ρσ� ≤ � by Jensen’s inequality. Using this recursion we get that

EX�
k ≤ σ� + σ�ρEX�

k−� ≤ σ� + σ�ρ + σ�ρ�EX�
k−� ≤ σ� k�

i=�(ρσ�)i−� ≤ σ�

� − σ�ρ .
In the same way,

E[X�
k �Xk−�] = (� + �θkX�

k−� + θ�kX�
k−�)Eξ�k ,

and then, since ρ�Eξ�k ≤ �,
EX�

k ≤ (� + � σ�ρ
� − σ�ρ + ρ�EX�

k−�)Eξ�k ≤ Eξ�k(� + � σ�ρ
� − σ�ρ ) k�

i=�(ρ�EX�
k−�)i−� <∞.
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Using the same argument as for (�.��) we see that (A�) holds since by the Hölder inequality

EG�(Xk , θ�Xk−�) ≤ �(EX�
k + ρ�EX�

k−� + �),
which is bounded, uniformly over k ∈ N.

� .� .� T������� �� AR(d ) ���������

We consider now an autoregressive model with d time-varying auto-regressive parameters:

Xk = d�
i=� θk,i Xk−i + ξk , k ∈ N, k ≥ d , (�.��)

where X�, X�, . . . , Xd−� have p bounded moments (cf. the end of this section). We would like to track the vector
θk = (θk,�, θk,�, . . . , θk,d), which may be random but must be measurable with respect to the σ-algebra generated
by Xk−�d−�. In this section we will use the notation Xk,d = �Xk , Xk−�, . . . , Xk−(d−�)� for the vector of the d
observations leading up to Xk .

In analogy with the non-dri�ing AR(d) model, we can associate with the model its (dri�ing) autoregressive
polynomial z � � −∑d

i=� θk,izi ; write then

t(z, θ) = � − d�
i=� θ iz

i , z ∈ C. (�.��)

It is well knows that an AR(p) model with autoregressive parameters θ has a stationary distribution if, and only
if, the (complex) zeros of the polynomial t(z, θ) are outside the unit circle.�is motivates the de�nition of the
parameter sets Θ(ρ), (cf. [��]) which we de�ne as the closure of

�θ ∈ Rd ∶ for all �z� < ρ−�, t(z, θ) ≠ ��, (�.��)

for any � < ρ < �. One can show that if B(r) is a uniform ball in Rd with radius r > � around the origin, then the
following embeddings hold:

B�(ρ−� + ⋅ ⋅ ⋅ + ρ−�d)−���� ⊆ Θ(ρ) ⊆ B�(� + ρ)d − ��,
which gives us some feeling as to the size of the parameter set (cf. [��]). �is implies in particular that for all
ρ ∈ (�, �), the set Θ(ρ) is non-empty and bounded.

�e AR(d) model (�.��) can also be described by the following inhomogeneous di�erence equation

Xk,d = C(θk)Xk−�,d + Ie�ξk , (�.��)



��� CHAPTER �. TRACKING OF DRIFTING PARAMETERS OF A TIME SERIES

where e� = (�, �, . . . , �) ∈ Rd and, for any θ ∈ Rd , C(θ) is the square matrix of order d

C(θ) =
��������������

θ� θ� � θd−� θd
� � � � �
� � � � �⋮ ⋮ � ⋮ ⋮
� � � � �

��������������
. (�.��)

�is matrix is usually called the companion matrix to the autoregressive polynomial t(z, θ); it is also sometimes
called the state transition matrix. One can show that the eigenvalues of C(θ) are exactly the reciprocals of the
zeros of t(z, θ).�is means that all the eigenvalues of C(θ) for θ ∈ Θ(ρ) are at most ρ < �.�is in turn implies
that for any sequence of vectors θd , θd+�, ⋅ ⋅ ⋅ ∈ Θ(ρ), the pair of sequences

��C(θd),C(θd+�),��, �Id , Id ,���
forms a so-called exponentially stable pair. Among other things, this gives us that so long as the p-th moments
of both the initial Xd−�,d and the noise terms ξk are bounded, then the p-th moments of all Xk , k ≥ d will be
bounded as well (cf. Proposition �� of [��]).

A particular gain function that can be used to track the parameters of an autoregressive model can be found
in [��].�e gain function considered there is an appropriately rescaled version of the gain (�.��), namely,

G(Xk , θ�Xk−�,d) = (Xk − θTXk−�,d) Xk−�,d
� + µXT

k−�,dXk−�,d ,

for an appropriately chosen µ > �. It is straightforward to check that the conditions in (Ã�) on the corresponding
conditional gain g hold in this case; the lower bound in (�.�) is established in Lemma �� of [��] and the upper
bounds are straightforward to check; assumption (A�) can be reduced to moment conditions on the observations
of the autoregressive process which are veri�ed if the signal θ lives in Θ(ρ) as mentioned above. In a sense,
conditions (A�) and (A�) capture the essential properties that a gain function must have such that resulting
tracking algorithm behaves properly and, in fact, these conditions will hold even if the noise terms are not
Gaussian; we discuss this issue again at the end of this section. In the following we propose an alternative gain
function. We will �rst treat the one-dimensional case where we can obtain a stronger result.

Consider d = � and assume that the sequence θk(Xk−�) ∈ Θ(ρ) is almost surely bounded, in absolute value,
by ρ < �. Assume also that EX�

� and EX�
� are bounded and that for all k ∈ N, Eξk = Eξ�k = �, Eξ�k = σ� > � and

Eξk = c σ�, for some constant � ≤ c < �. (We can take c = � if the noise is Gaussian, for example.) Let us say we
would like to use the following gradient type gain function

Gk�Xk , θ�Xk−�� = X�
k−�(Xk�Xk−� − θ),

gk�θ , ��Xk−�� = −X�
k−�(θ − �), (�.��)

almost surely.�e random eigenvalues in (A�) reduce, in this case, to Λ(�)(Xk−�) = X�
k−�. Note that if for all k ∈ N
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Xk−� are integrable, we have

E�X�
k−��Xk−�� = E�(Xk−�θk−� + ξk−�)��Xk−�� = X�

k−�θ�k−� +Eξ�k−� ≥ σ�, (�.��)

but still X�
k−� would not be almost surely upper-bounded by a constant. To remedy this we will truncate X�

k−� and
consider

Gk�Xk , θ�Xk−�� =min�X�
k−�, � − c�

σ��(Xk�Xk−� − θ),
gk�θ , ��Xk−�� = −min�X�

k−�, � − c�
σ��(θ − �). (�.��)

(Note that this is a rescaled gain function of the same type as Ḡ at the end of Section �.�.) We now have an almost
sure upper-bound for Λ(�)(Xk−�) = min �X�

k−�, (� − c)σ����; we truncate X�
k−� at this speci�c value since one

can prove (cf. Lemma �.�) that

E�min�X�
k−�, � − c�

σ���Xk−�� ≥ � − c
�

σ� > �,
so that (A�) holds. Assumption (A�) also holds since

E�Gk�Xk , θ�Xk−�� − gk�θ , ��Xk−���� = Emin �X�
k−�, �−c� σ���
X�
k−�

E���Xk − �Xk−����Xk−��
≤ �� − c

�
��σ�Eξ�k = �� − c�

��σ�.
�e previous truncation argument is still valid if we truncate X�

k−� at a higher value. In that case, we also still
have that (A�) and (A�) hold, with a larger constant λ� in (A�) and larger C in (A�).�is means that in order to
use the previous gain function we don’t need to know the exact value of σ� but only an upper bound for it. Also, in
practice, for a truncation at a high enough value, the e�ect of the truncation will be innocuous and trajectories of
(�.��) and (�.��) will coincide, with high probability; the truncation is simply an artifact to enforce the ful�llment
of (A�) and should be of little practical importance. Up to the requirement that the distribution of the noise be
symmetrical about �, the previous result generalizes that of [�] where the noise terms are assumed to be almost
surely bounded.

Now we turn our attention to the general AR(d) model. As we will see in what follows, assumptions (A�)
and (A�) can be easily checked. In the d dimensional case we assume that the noise terms ξk in (�.��) form
a Gaussian white noise sequence with mean zero and variance σ� > �. Assume �rst that the autoregressive
parameters do not depend on k, i.e. θk ≡ θ = (θ�, . . . , θd) ∈ Θ(ρ) ⊂ Rd . Given the vector of past observations
Xk−d ,d = �Xk−d , Xk−d−�, . . . , Xk−�d+��, we can see Xk,d as a system of d equations in Xk , Xk−�, . . . , Xk−(d−�),
depending on Xk−d , Xk−d−�, . . . , Xk−�d+� and θ, which, for ξk,d = �ξk , ξk−�, . . . , ξk−(d−�)�, can be written as

A(θ)Xk,d = B(θ)Xk−d ,d + ξk,d ; (�.��)

the matrices A(θ) and B(θ) are Toeplitz matrices created from the vectors a(θ) = (�, . . . , �, �,−θ�, . . . ,−θd−�)
and b(θ) = (θ�, . . . , θd−�, θd , �, . . . , �) respectively. (Form = (m−(d−�),m−(d−�), . . . ,m�, . . . ,md−�,md−�), the



��� CHAPTER �. TRACKING OF DRIFTING PARAMETERS OF A TIME SERIES

Toeplitz matrix of order d associated with that vector is the square matrix M of order d with entries mi , j = mi− j,
such that the entries of the matrix are constant over descending diagonals.)�e matrix A(θ) is upper triangular
with a diagonal consisting of ones whence invertible. We conclude, then, that given the full past of the process,
Xk−d ,

Xk,d �Xk−d ∼ N�A−�(θ)B(θ)Xk−d ,d , σ�A−�(θ)A−T(θ)�. (�.��)

Alternatively, we could have derived the (�.��) by applying the recursion in (�.��) d times.

In this case we will consider a gain of the type (�.��) such that

Gdk�x, θ�Xd(k−�),d� = ∇θ log pθ�x�Xd(k−�)�, (�.��)

where pθ(⋅�Xd(k−�)) is the conditional density of (�.��). At the end of this section we explicitly compute (�.��);
see (�.��).

For us, each data point will be a vectorXdk,d , k ∈ N such that the tracking sequence is updated with batches of
d observations from the autoregressive process. (Below, to ease the notation, we will mostly write x and y instead
of Xn

dk,d and Xn
d(k−�),d , respectively.)�is is necessary to make sure that the representation (�.��) is valid even if

the parameter θ is allowed to change among di�erent batches of observations; otherwise the system (�.��) would
be under-determined. We must now establish that this gain function veri�es (A�).

As explained in Section �.�, the expectation gdk can be seen as minus the gradient of the Kullback-Leibler
divergence between the transition kernel with two di�erent parameters.�is observation is particularly useful if
we are able to write this Kullback-Leibler divergence as an appropriate quadratic form. One can show that the
Kullback-Leibler divergence between two d-dimensional multivariate normal distributions P� = N(µ�, Σ�) and
P� = N(µ�, Σ�) is given by

K(P�, P�) = �
�
�log detΣ�

detΣ�
+ tr(Σ−�� Σ�) − d + (µ� − µ�)TΣ−�� (µ� − µ�)� . (�.��)

Write, for y ∈ Rd , µ(θ , y) = A−�(θ)B(θ)y and Σ(θ) = σ�A−�(θ)A−T(θ). Let also S = Sd be the Toeplitz matrix
associated with the vector s = (�, . . . , �, �, �, . . . , �) ∈ R�d−� where the � occupies the (d + �)-th position; these are
sometimes called shi�matrices. For i = �, . . . , d − �, the powers Si are the Toeplitz matrices associated with the
vectors (�, . . . , �, �, �, . . . , �) ∈ R�d−� where the � occupies the (d + i)-th position; Sd is O = Od , the null matrix
of order d, and S� should be read as I = Id , the identity matrix of order d. It follows from the de�nition of the
matrix A(⋅) that for θ , � ∈ Θd ,

A(θ) − A(�) = S(�� − θ�) + S�(�� − θ�) +� + Sd(�d − θd),
from where we conclude

A(θ)A−�(�) = I + SA−�(�)(�� − θ�) + S�A−�(�)(�� − θ�) + ⋅ ⋅ ⋅ + SdA−�(�)(�d − θd).
We will compute now K�N(µ(� , y), Σ(�)), N(µ(θ , y), Σ(θ))�. For all θ, the matrices A(θ) have all eigen-

values equal to one (so then also their inverses) whence detΣ(θ) ≡ σ�d ; we conclude that the logarithm in (�.��)



�.�. SOME APPLICATIONS OF THE MAIN RESULT ���

is null. Also, using basic properties of the trace and the representation for A(θ)A−�(�) derived above,

tr�Σ−�(θ)Σ(�)� − d = tr��A−�(θ)A−T(θ)�−��A−�(�)A−T(�)�� − d
= tr�AT(θ)A(θ)A−�(�)A−T(�)� − d = tr��A(θ)A−�(�)�TA(θ)A−�(�)� − d
= � d�

i=� tr �SiA−�(�)�(�i − θ i) +
d�
i=�

d�
j=� tr
�A−T(�)(Si)TS jA−�(�)�(�i − θ i)(� j − θ j).

�e inverse of an upper-triangular matrix is upper-triangular and so, for all i = �, . . . , d and all �, the matrices
SiA−�(�) have null trace. Denote now for any n by m matrix M, vect(M) as the column vector containing the
nm entries of M in any (�xed) order. Write then for i = �, . . . , d, vi(�) = vect �SiA−�(�)�; vd(�) is always a
null vector. Note that the i , j-the element of the double sum in the previous display is given by vTi (�)v j(�), for
i , j = �, . . . , d. We conclude that the previous display can be written as

(� − θ)T�v�(�)v�(�) . . . vd(�)�T�v�(�)v�(�) . . . vd(�)�(� − θ),
where the matrices are written by columns.

�e quadratic form in the Kullback-Leibler divergence (�.��) can be written, for any θ , � ∈ Θd and y ∈ Rd , as

�µ(θ , y) − µ(� , y)�TΣ−�(θ)�µ(θ , y) − µ(� , y)� == σ−�yT�B(θ) − A(θ)A−�(�)B(�)�T�B(θ) − A(θ)A−�(�)B(�)�y.
Note that the matrix B(⋅) is linear in its argument and so se can write the expansion

B(θ) − B(�) = B(θ − �) = �Sd−��T(�� − θ�) +� + ST(�d−� − θd−�) + I(�d − θd),
from where, using the representation for A(θ)A−�(�) derived above, we have

B(θ) − A(θ)A−�(�)B(�) = C�(�)(�� − θ�) + C�(�)(�� − θ�) +� + Cd(�)(�d − θd),
where Ci(�) = �Sd−i�T − SiA−�(�)B(�) for i = �, . . . , d. We can then write, for θ , � ∈ Θ(ρ) and y ∈ Rd ,

�B(θ) − A(θ)A−�(�)B(�)�y = �C�(�)y�Cd(�)y��θ − ��.
We conclude that the following representation holds

gdk�θ , ��Xd(k−�),d� = −σ−��σ��v�(�)v�(�) . . . vd(�)�T�v�(�)v�(�) . . . vd(�)�++ �C�(�)Xd(k−�),d�Cd(�)Xd(k−�),d�T�C�(�)Xd(k−�),d�Cd(�)Xd(k−�),d���θ − ��.
Note that the matrix that precedes the vector (θ − �) does not depend on θ and is clearly positive semi-de�nite.
We bound now the eigenvalues of this sum of matrices.

�e �rst matrix in the sum above is positive semi-de�nite but has at least one null eigenvalue. It is also clear
that the entries of this matrix are polynomials in ��, . . . , �d−�, such that, sinceΘ(ρ) is a bounded set, we have that
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the largest eigenvalue of this matrix is upper bounded, uniformly over Θd , by some constant, say, K�, depending
only on d and the diameter of Θ(ρ); we remind that this diameter is at most (� + ρ)d − � < �d − �.

We have that

tr� �C�(�)y � Cd(�)y�T �C�(�)y � Cd(�)y� � =
yTCT

� (�)C�(�)y +� + yTCT
d (�)Cd(�)y.

For each i = �, . . . , d − �, the entries of the matrices CT
i (�)Ci(�), are polynomials in ��, . . . , �d ; the previous

display is then also upper-bounded uniformly over Θ(ρ) by, say, K�yTy, where K� is a constant which like K�

above, depends only on d and the diameter of Θ(ρ).
To derive a lower bound on the smallest eigenvalue of the matrix in the representation for gdk , note that this

matrix can be rewritten in the form�����������
v�,�(�) � v�,d−�(�) �⋮ � ⋮ ⋮
vd−�,�(�) � vd−�,d−�(�) �
cd ,�(�) � cd ,d−�(�) yTy

�����������
+
�����������

c�,�(�) � c�,d−�(�) c�,d(�)⋮ � ⋮ ⋮
cd−�,�(�) � cd−�,d−�(�) cd−�,d(�)

� � � �

�����������
for vi , j(�) = σ�vTi (�)v j(�) and ci , j(�) = yTCT

d−i+�(�)Cd− j+�(�)y, where we swapped the last rows of the matri-
ces. (Note that Cd(�) ≡ I so that cd ,d(�) = yTy and also vd(�) = �T .)

Note that the top le� matrices in the block matrices above are Gram matrices and therefore positive semi-
de�nite; the full block matrices are triangular by blocks.�e matrix [vi , j(�)]i , j=�,...,d−� is the Gram matrix associ-
atedwith the vectors v�(�), . . . , vd−�(�). It is simple to see that these vectors are linearly independent (this follows
from the fact that A−�(�) is a triangular matrix with �’s in its main diagonal) whence the associated Gramian is
actually positive-de�nite for each �. Note also that the determinant of this Gramian is a polynomial in the entries
of the matrix which in turn are a polynomial in ��, . . . , �d . Since � ∈ Θ(ρ), which is a compact set, we conclude
that the in�mum of the determinant of this matrix over � ∈ Θ(ρ) is lower bounded by some positive constant say,
K�. Using the same reasoning we can see that its determinant is upper bounded by some constant K�. A lower
bound on the smallest eigenvalue can then be obtained by noting that for any positive-de�nite matrixM of order
d,

λ(�)(M) ≥ det(M)
λd−�(d)(M) ≥ K�

Kd−�
�
≥ ν > �,

for some constant ν depending only on d and say, the diameter of the parameter set Θ(ρ).
We conclude that the smallest eigenvalue of the block matrix on the le� is at least min(ν, yTy). �e block

matrix on the right is clearly positive semi-de�nite. We conclude that the smallest eigenvalue of the matrix in the
representation for gdk above is lower bounded by min(ν, yTy) by using Weyl’s Monotonicity�eorem; cf. [�].

Condition (A�) is simpler to check. Let D(Xdk,d ,Xd(k−�),d) = D(Xdk,�d) be the Toeplitz matrix associated
with the vector d(Xdk,�d) = (Xd(k−�)+�, . . . , Xdk−�, Xdk−�) which is simply the vector Xdk−�,�d−� written back-
wards. Based on this, the gain (�.��) can be written, up to a constant depending only on σ� and with x = Xdk,d ,
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y = Xd(k−�),d , in the following form

Gdk�x, θ�y� = −∇θ�A(θ)x − B(θ)y�T�A(θ)x − B(θ)y�
= −��A(θ)x − B(θ)y�T ∂�A(θ)x − B(θ)y�∂θ= ��A(θ)x − B(θ)y�TD(x, y)J ,

(�.��)

where ∂�∂θ represents the Jacobian operator. To verify (A�) it su�ces to check that the expectation of the norm
of Gdk is bounded. We omit the details but it is clear from the expression derived above that the norm of the
gain function squared is a polynomial of degree � in the elements of Xdk−�,�d−�. We have already mentioned that
so long as the initial values for the autoregressive process and the noise terms have uniformly bounded p-th
moments, then this transfers to the each observation Xk , as long as the sequence of parameters of the model, θk ,
lives in the parameter set Θ(ρ), for some ρ < �.

As we saw above, the eigenvalues of the matrix appearing in the conditional gain vector gdk are upper and
lower bounded by multiples of �Xd(k−�),d���. We can easily get rid of this dependence by using the scaled gain
Ḡdk de�ned at the end of Section �.�, for s(x) = �x��� and large enough κ. �e derivation in (�.��) shows that
(A�) still holds for this rescaled gain.�e largest eigenvalue of the matrix in ḡdk corresponding to Ḡdk is going
to be almost surely bounded by construction. We need then to verify that the smallest eigenvalue of the matrix
in ḡdk has conditional expectation bounded away from zero such that (A�) holds. Note that

E��Xd(k−�),d����Xd(k−�),d� ≥ E�X�
d(k−�)�Xd(k−�),d� =

E��θdk,�Xd(k−�)−� +� + θdk,dXd(k−�) + ξd(k−�)���Xd(k−�),d�.
�ere are three di�erent types of terms in the sum above: a) error terms which are independent of the �ltration, b)
observations which are measurable with respect to the �ltration, and c) observations which can be written as an
error term which is independent of the �ltration and a linear combination of previous observations of the process.
�e sum can therefore be written as the sum of two terms, namely: a) a linear combination of terms which are
measurable with respect to the �ltration, and b) a linear combination of error terms which are independent of
the �ltration.�is can then be bounded in the same way as (�.��). We conclude that the previous display is lower
bounded by σ�.

One can then proceed as in Lemma �.� to show that for an appropriately large κ,E�min(X�
d(k−�), κ)�Xd(k−�),d�

is positive; we omit this derivation.

For the most part, the requirement that the errors be Gaussian is not used extensively so we expect that the
same results hold simply under appropriate moment assumptions: one could still use the gain (�.��) and bound
its conditional expectation directly instead of using the Kullback-Leibler representation in (�.��) and assure the
validity of (A�) and (A�) based on moment assumptions on the error terms and on the initial conditions for the
model as we did in the one-dimensional case.
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� .� .� Q������� ��������

In this section we return to the numerical example from Section �.� where we considered, for n ∈ N, the model

Xi = f (ti) + σ(ti)ξi , i = �, . . . , n,
where the ξi are independent standard normal random variables, t(n) = ���n − �, ��n − �, . . . , � − ��n, � − ��n�
and, for t ∈ [−�, �],

f (t) = sin(t)
t

, σ(t) = �.� exp(� − t).
Our quantity of interest was, for α ∈ (�, �), the sequence θk = θα,k = �α(tk), where

�α(t) = f (t) + σ(t)Φ−�(α), t ∈ [−�, �],
a quantile function of level α.

In Section �.� we proposed a tracking sequence for θk based on a speci�c choice of gain function. Our main
result from this chapter provides us with an alternative approach for tracking the dri�ing quantile θk . We can
express the quantiles θk as a functional of µk = f (tk) and νk = σ(tk), i.e., θk = �α(µk , νk) for

�α(s, t) = s + tΦ−�(α),
where Φ is the cumulative distribution function of a standard normal random variable. If we have sequences µ̂k
and ν̂k which respectively track µk and νk then

θ̂k = �α(µ̂k , ν̂k)
is a tracking sequence for θk .

Consider the gains
G�(x , µ) = x − µ, G�(x , ν�µ) = (x − µ)� − ν, (�.��)

based on (�.��). Assuming that by time k we have observed Xk = (X�, . . . , Xk) we can use this data and the gains
(�.��) to de�ne the tracking sequences

µ̂k = ΠC̄�µ̂k−� + γ�,kG�(Xk , µ̂k−�)�,
ν̂k = ΠC̄�ν̂k−� + γ�,kG�(Xk , ν̂k−� � µ̂k−�)�,
θ̂k = �α(µ̂k , ν̂k),

(�.��)

where µ̂� = ν̂� = �, C̄ = � and γ�,k ≡ C�,γ(log(n)�n�)��� and γ�,k ≡ C�,γ(log(n)�n�)��� are the step sequences.
We repeated the numerical study from Section �.� for this new tracking sequence for θk . We tookC�,γ = C�,γ =

�.�, n ∈ {���, ���, ���, ����, �����} and α ∈ {�.�, �.��, �.�, �.��, �.�}. We present the results in Figure �.�.�.
�ere seems to be some improvement over the results from Section �.�, especially for low sample size.�e
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Figure �.�.�: Results of the tracking algorithm. All pictures contain the data (blue dots), the true quantile function for the
chosen values of α (black lines), and the respective tracking sequences (tones of red). To each picture corresponds a speci�c
sample size. On the �rst row we compare, for n = ���, the raw tracking sequence (le�) with a smoothed version of it (right).

tracking sequences also seem to be less noisy than the ones obtained in Section �.�.�ese improvements are not
surprising since the gain considered there only depends on the value of the indicators 1{Xk < θ̂k−�} rather than
on the actual observation Xk as is the case with the gain (�.��).
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In this section we present some more numerical results. Our model is a � dimensional Poisson process with two
space dimensions and one time dimension. More concretely, we will take a Poisson process on the unit square,
evolving in time. �is kind of model is sometimes called Poisson rain – we can imagine the Poisson events as
raindrops falling on the unit square over time. Our Poisson process �Nt ∶ t ∈ [�, �]�will have an intensity function
λ(x , y, t) ∶ [�, �]� � R+ such that an event is a point in [�, �]�.

To �t this model into our framework we will discretize the unit square into a grid of ��� equally sized, ����
by ���� squares, and make observations of the process every ������ time units. We will observe the process for
� time unit such that by time t = � our data will be, say, a �� by �� by ���� (three-dimensional) matrix M.�e(i , j, k)-entry in the matrix, call it mi , j,k , i , j = �, . . . , ��, k = �, . . . , ���� is an observation of a Poisson random
variable with intensity

λi , j,k = � k�����
(k−�)������ i���

(i−�)���� j���
( j−�)��� λ(x , y, t) dx dy dt,

for i , j = �, . . . , ��, k = �, . . . , ����; these ���.��� Poisson random variables are mutually independent.

�e speci�c intensity function used in our simulation is obtained, appropriately enough, from a picture of a
cloud.�e objective is to see the resulting Poisson process as a crude model for rainfall. On a computer, images
are arrays of pixels, which are small squares characterized by a potentially di�erent color. More precisely, image
�les can be seen as a collection of � matrices of the same size, each corresponding to a color channel – red,
green and blue. Each entry of each matrix contains a number in {�, �, . . . , ���}, corresponding to the level of the
respective primary color; each triplet of colors corresponding to the a �xed position in the matrices characterizes
the corresponding pixel. When combined, each triplet encodes one of roughly �� million colors (���� = ���)
which is called the ��-bit color palette. For example, the triplet (�, �, �) corresponds to black, (���, �, �) to red,(���, ���, ���) to white. We took then a ���� × ���� pixel image and discarded all but the red channel. �e
resulting ���� × ����matrix contains entries in {�, �, . . . , ���} and encodes the image seen in Figure �.�.�.

Figure �.�.�: Picture used to de�ne the intensity function of the Poisson process. Image obtained from [��].
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�e intensity function at time t, (x , y)� λ(x , y, t) is obtained by taking a ���× ��� sub-matrix of the cloud
image and seeing each entry as a height for a two-dimensional histogram, which is then linearly interpolated and
whose support we rescale to the unit square.�e resulting function obtained from this ��� × ��� window, maps
the unit square to the interval [�, ���] and is ���minus our intensity function at time t – we invert the color such
that the white in the picture represents low intensity (�) and the black represents high intensity (���). At time
t = � we take this window to be in the bottom le� side of Figure �.�.� and then we slowly move the window along
a clock-wise spiral towards the center of the image.�is represents the evolution of the intensity function along
the time axis.

We simulated data from this model. For each i , j = �, . . . , �� the sequence (mi , j,k ∶ k = �, . . . , ����) is a
sequence of observations from the model described in Section �.�.� with n = ���� and θnk = λi , j,k , k = �, . . . , ����.
For the purpose of this implementation we assumed that for each (i , j), the intensity function is a Lipschitz
function with smoothness parameter α = �. By this we mean that for i , j = �, . . . , ��, λi , j(t) ∈ L�([�, �]), where

λi , j(t) = � i���
(i−�)���� j���

( j−�)��� λ(x , y, t) dx dy.
For this setup, our algorithm tracks the matrix valued parameter

�k = �λi , j,k�i , j = �λi , j(k�n)�i , j i , j = �, . . . , ��,
by running �� × �� tracking sequences in parallel where each component θ̂ i , j,k evolves according to

θ̂ i , j,k+� = θ̂ i , j,k + γkG(mi , j,k , θ̂ i , j,k), i , j = �, . . . , ��,
with γk = Cγn−��� log��� n and for the gain G(x , θ) = x − θ as in (�.��); for the results seen in Figure �.�.� we took
Cγ = �.��. In [��] and [��] we also made available videos depicting the procedure of simulating the data and
the algorithm running, respectively. For the results seen in the video, we have smoothed the tracking sequence
spatially by replacing each θ̂ i , j,k with the mean of its neighboring cells.
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Intensity λ(x,y,1/1000) Tracking sequence θ(x,y,1/1000)

Intensity λ(x,y,50/1000) Tracking sequence θ(x,y,50/1000)

Intensity λ(x,y,500/1000) Tracking sequence θ(x,y,500/1000)

Figure �.�.�: True intensity (le� column) and the obtained tracking sequence (right column) at t=������,�������,��������
(top to bottom).�e displayed tracking sequence corresponds to a linear interpolation of the actual tracking sequence.
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�e algorithm was initiated from a zero matrix, i.e., we took θ i , j,� = �, for i , j = �, . . . , ��. It moves quite
quickly to a reasonable approximation of the true intensity function and then accompanies the evolution of the
intensity. �e parameter of the algorithm Cγ needs to be picked large enough as seen in Section �.�.�. If it is
taken too large, though, it will a�ect the variance of the tracking sequence. To make sure that Cγ can be taken
appropriately large and that the resulting tracking sequence does not have too large variability, we can smooth
the tracking sequence along the space dimensions. In this sense, we can, for �xed t, replace each approximation
by the average of its neighbors and smooth out the tracking sequence spatially. Alternatively, one can also treat
the discretization parameter for the grid (which we took here as ��) as a parameter for the algorithm and pick it
appropriately, depending on n.

�e method seems to work reasonably well at capturing the shape of the underlying intensity function and
its evolution in time. Without any prior knowledge on the intensity function, the choice of an adequate step size
for the algorithm, including the value of the constant in the sequence γk requires some experimentation.�ese
choices can, however, be motivated by tuning the algorithm using training data.

� .� P����� �� ��� ������

Proof:[Proof of Lemma �.�] First suppose that y = Mx for some symmetric positive-de�nite matrix M such that
� < λ� ≤ λ(�)(M) ≤ λ(d)(M) ≤ λ� <∞.�en �x , y� = xTMx and therefore

� < λ��x��� ≤ λ(�)(M)�x��� ≤ �x , y� ≤ λ(d)(M)�x��� ≤ λ��x���
and �y��� = �y, y� = xTMTMx = xTM�x ≤ λ���x���.

Now we prove the converse assertion. Suppose x , y ∈ Rd and � < λ′��x��� ≤ �x , y� ≤ λ′��x��� < ∞ for
some λ′�, λ′� ∈ R such that � < λ′� ≤ λ′� < ∞ and that �y�� ≤ C�x��. Let V = {v = ax + by ∶ a, b ∈ R} be
the linear space spanned by x and y. First consider the case dim(V) = �, i.e., y = αx for some α ∈ R. �en�y, x� = α�x��� so that � < λ′� ≤ α ≤ λ′� < ∞. �us y = αx = Mx with symmetric and positive M = αI so that
� < λ′� ≤ α = λ(�)(M) = λ(d)(M) ≤ λ′� <∞.

Now consider the case dim(V) = �. Let e� = x��x�� and {e�, e�} be an orthonormal basis of V .�en

x = �x��e�
y = αe� + βe�.

�e conditions λ′��x��� ≤ �x , y� = α�x�� ≤ λ′��x��� and �y�� =�α� + β� ≤ C�x�� imply that

λ′��x�� ≤ α ≤min{λ′�,C}�x��, �β� ≤ C�x��.
Let e� be chosen in such a way that β > � (which is always possible.) Now, we change the basis of V as follows:

e′� = cos(θ)e� − sin(θ)e�,
e′� = sin(θ)e� + cos(θ)e�.
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We thus rotate the basis {e�, e�} by the angle θ. In this new basis,

x = �x�� cos(θ)e′� + �x�� sin(θ)e′� = αx e′� + βx e′�,
y = (α cos(θ) − β sin(θ))e′� + (α sin(θ) + β cos(θ))e′� = αye′� + βye′�.

Recall that α, β > �. Take θ ∈ (�, π��) such that α cos(θ) − β sin(θ) = �
�α cos(θ) (i.e., tan(θ) = α

�β ).�en,

λ′�
�
≤ α
��x�� = αy

αx
≤ min{λ′�,C}

�
, λ′� ≤ α�x�� ≤ βy

βx
≤ α�x�� + �β�

α�x�� ≤min{λ′�,C} + �C�

λ′�
.

Take then λ� = λ′��� and λ� =min{λ′�,C} + �C��λ′�.
Let {e�, . . . , ed} be the orthonormal basis of V�, so that b = {e′� , e′�, e�, . . . , ed} is an orthonormal basis of

Rd . Take

M′ = ������
D �
� Id−�

������ with D = ������ αy�αx �
� βy�βx

������
where the �’s indicate null matrices of the appropriate orders. We then have that y = M′x in the basis b and
λ� ≤ λ(�)(M′) ≤ λ(d)(M′) ≤ λ�. We can �nally obtain M by using the (orthogonal) change of basis matrix E
from basis b to the canonical basis ofRd asM = E−�M′E = ETM′E. Note thatM has the same eigenvalues asM′
(which are all positive and �nite) and is symmetric.
Proof:[Proof of Lemma �.�] For the sake of brevity, we use the notations θk = θk(Xk−�), Gk = G(Xk , θ̂k �Xk−�)
and gk = g(θ̂k , θk �Xk−�), k ∈ N, Fk = σ(Xk) is the σ-�eld generated by Xk = (X�, X�, . . . , Xk).

Recall thatΘ is compact so that supθ∈Θ �θ�� ≤ CΘ. First assume E�θ̂k��� ≤ KC�
Θ. By (�.�) and (�.�), we obtain

E�Gk��� = E�Gk − gk + gk)��� ≤ �C + �L(E�θk��� +E�θ̂k���) ≤ �C + �L(K + �)C�
Θ = C�,

which implies, in view of (�.�) and γk ≤ Γ,
E�θ̂k+���� ≤ �E�θ̂k��� + �γ�kE�Gk��� ≤ �KC�

Θ + �Γ�C� = C�.

Next, consider the case E�θ̂k��� > KC�
Θ which of course implies E�θ̂k��� > KE�θk���. As Mk is a symmetric

positive-de�nite matrix such that � < A ≤ λ(�)(Mk) ≤ λ(d)(Mk) ≤ B <∞, by the Cauchy-Schwarz inequality,

θ̂Tk Mkθk ≤ �θ̂Tk Mkθk � ≤ �θ̂Tk Mk θ̂k�����θTk Mkθk���� ≤ B�θ̂k���θk��.
By using the last relation, (�.�), (�.�), (�.�) and (�.�), we evaluate E�θ̂k+����:

E�θ̂k+���� ≤E�θ̂k��� + �γkE�θ̂TkE(Gk �Fk−�)� + γ�kE�Gk���≤E�θ̂k��� − �γkE�θ̂Tk Mk(θ̂k − θk)� + γ�k��C + �L(E�θk��� +E�θ̂k���)�≤E�θ̂k��� − �γk�AE�θ̂k��� −E�θ̂Tk Mkθk)� + γ�k��C + �LC�
Θ + �LE�θ̂k���)�≤E�θ̂k��� − �γk�AE�θ̂k��� − BE��θ̂k���θk���� + γ�k��C + �LC�

Θ + �LE�θ̂k���)�.
FromE�θ̂k��� > KE�θk��� and theCauchy-Schwarz inequality, it follows thatE�θ̂k���θk�� ≤ �E�θ̂k���E�θk������� ≤
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E�θ̂k����√K. Using this, we proceed by bounding the previous display as follows:

≤E�θ̂k��� − �γk�AE�θ̂k��� − B(E�θk���E�θ̂k���)���� + γ�k��C + �LC�
Θ + �LE�θ̂k���)�≤E�θ̂k��� − γkE�θ̂k�����A− �B√

K
− γk�L� + γ�k(�C + �LC�

Θ)
≤E�θ̂k��� − γkE�θ̂k�����A− �B√

K
− γk�L� + γ�k(�C + �LC�

Θ)E�θ̂k���KC�
Θ=E�θ̂k��� − γkE�θ̂k�����A− �B√

K
− γk �LC�

Θ(K + �) + �C
KC�

Θ
� ≤ E�θ̂k���,

for su�ciently large K and su�ciently small γk .�us, for su�ciently large K and su�ciently small γk ,E�θ̂k+���� ≤
C�.

Lemma �.� Let M be a symmetrical positive-de�nite matrix of order d with (increasing) eigenvalues λ(i)(M), the
smallest and largest of which we denote as λ(�)(M) and λ(d)(M) respectively.�en, for γ > � such that γλ(d)(M) <
�, and constants Kp > �, p ∈ N,

���M���p ≤ Kp���M���� = Kpλ(d)(M),
� < λ(�)(I − γM) ≤ λ(d)(I − γM) = � − γλ(�)(M) < �,

where for p ∈ N, ���M���p is the operator norm induced by lp.

Proof: Note that for x ∈ Rd , if

Rp
� =max

x≠�
�x�p�x�� , R�

p =max
x≠�
�x���x�p ,

then it follows (cf. Horn and Johnson [��,�eorem �.�.��])

max
M≠�
���M���p���M���� = Rp

�R
�
p = Kp .

We then have (c.f. Horn and Johnson [��, Section �.�.�]) that for M a real, symmetrical, positive-de�nite matrix,
where λ(i)(M) is the i-th largest eigenvalue of a matrix M,

���M���� =max
i

�
λi(MTM) =max

i

�
λ(i)(M�) = λ(d)(M).

�e �rst statement then follows. Note that by application of theHölder inequality, we have �x�p ≤ d(q−p)�(qp)�x�q
for p ≤ q and so we can take Kp = d(p−�)�(�p) if p ≥ � and Kp = d��� if p = �.

It is straightforward to check that the matrix I − γM has eigenvalues � − γλi . Now, if γλ(d)(M) < � then for
all i = �, . . . , d, � < γλ(�)(M) ≤ γλi ≤ γλ(d)(M) < � implying � > � − γλ(�)(M) ≥ � − γλi ≥ � − γλ(d)(M) > � and
so maxi=�,...,d �� − γλi � = � − γλ(�)(M) < �.
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Lemma �.� (Abel Tranformation) For k�, k ∈ N such that k� ≤ k, let ai ∈ Rd, i = k�, . . . , k, Bi, i = k�, . . . , k,
be square d × d matrices and Ai = ∑i

j=k� aj, i = k�, . . . , k.�en

k�
i=k�

Biai = k−��
i=k�
(Bi − Bi+�)Ai + BkAk .

Proof: We prove this by induction on k. For k = k� we simply have Bk�ak� = Bk�Ak� = Bk�ak� and the assertion
holds. Let us assume then that the equality holds for k = n and let us prove the result for k = n + �. We have

n+��
i=k�

Biai = n�
i=k�

Biai + Bn+�an+� = n−��
i=k�
(Bi − Bi+�)Ai + BnAn + Bn+�an+�

= n�
i=k�
(Bi − Bi+�)Ai − (Bn − Bn+�)An + BnAn + Bn+�an+�

= n�
i=k�
(Bi − Bi+�)Ai + Bn+�An+�.

Lemma �.� Consider an AR(�) model with a random, dri�ing parameter θk,

Xk = Xk−�θk + ξk , k ∈ N,
where the random variables ξk are independent of σ(X�, . . . , Xk−�), the σ-algebra generated by Xk−� and for all
k ∈ N,Eξk = Eξ�k = �,Eξ�k = σ� > � and, for some constant � ≤ c < �,Eξ�k = c σ�. Let also X� be such thatEX�

� and
EX�

� are bounded. We assume that the dri�ing parameter θk is measurable with respect to σ(Xk−�), and veri�es�θk � ≤ q < �, almost surely, for every k ∈ N.�en, for any s such that �s ≥ (� − c)σ�,
E�min �X�

t , s��Xt−�� ≥ � − c
�

σ�.

Proof: Note �rst that since σ� > �, ifEX�
� andEX�

� are bounded then we can writeEX�
� ≤ c�σ� andEX�

� ≤ c�σ� for
some c�, c� ≥ �. Using the independence of the noise and the bound on the norm of the autoregressive parameters
we have that

EX�
k = E(Xk−�θk + ξk)� = E[X�

k−�θ�k] + �E[Xk−�θk]Eξk +Eξ�k ≤ q�EX�
k−� + σ�,

and by using this recursion we conclude that

EX�
k ≤ q�kEX�

� + σ� k−��
i=� q

�i ≤ σ� �c� + �
� − q�� <∞.
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Using the previous display and proceeding in the same way,

EX�
k = E(Xk−�θk + ξk)� ≤ q�EX�

k−� + �q�σ�EX�
k−� + c σ� ≤ q�EX�

k−� + σ�κ,
with κ = c + �q�c� + �q��(� − q�). Using this recursion we have that

EX�
k ≤ q�kEX�

� + σ�κ k−��
i=� q

�i ≤ σ� �c� + κ
� − q�� <∞.

We can now use basic properties of the conditional expectation to see that,

E�X�
k �Xt−�� = X�

k−�θ�k + �Xk−�θkEξk +Eξ�k = X�
k−�θ�k + σ�,

E�X�
k �Xt−�� = X�

k−�θ�k − �X�
k−�θ�kEξk + �X�

k−�θ�kEξ�k − �Xk−�θkEξ�k +Eξ�k == X�
k−�θ�k + �X�

k−�θ�kσ� + c σ�.
For a, b ∈ R we have min(a, b) = (a + b)�� − �a − b��� and so, by the Cauchy-Schwarz inequality and the last
display,

E�min�X�
t , ρ σ

���Xt−�� = E� ��X�
k + ρ

�
σ� − �

�
�X�

k − ρσ���Xt−��
≥ �
�
X�
k−�θ�k + ρ + �

�
σ� − �

�
�E��X�

k − ρσ����Xt−������,
for ρ > �. We now have, by plugging in the expressions derived above and simplifying,

E��X�
k − ρσ����Xt−�� = E�X�

k �Xt−�� − �ρσ�E�X�
k �Xt−�� + ρ�σ� =

= X�
k−�θ�k + �(� − ρ)X�

k−�θ�kσ� + (c − �ρ + ρ�)σ� = �X�
k−�θ�k + c + �

�
σ���,

if we pick ρ = (� − c)�� > �. Combining the previous two displays we conclude that

E�min�X�
t ,
� − c
�

σ���Xt−�� ≥ � − c
�

σ�,

and the statement of the lemma follows a fortiori.
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